37 resultados para Sismología


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is in the frame of the cooperative line that several Spanish Universities and other foreign partners started with the Haitian government in 2010. According to our studies (Benito et al. in An evaluation of seismic hazard in La Hispaniola, after the 2010 Haiti earthquake, 33rd General Assembly of the European Seismological Commission, Moscow, Russia, 2012) and recent scientific literature, the earthquake hazard in Haiti remains high (Calais et al. in Nat Geosci 3:794–799, 2010). In view of this, we wonder whether the country is currently ready to face another earthquake. In this sense, we estimated several damage scenarios in Port-au-Prince and Cap-Haitien associated to realistic possible major earthquakes. Our findings show that almost 50 % of the building stock of both cities would result uninhabitable due to structural damage. Around 80 % of the buildings in both cities have reinforced concrete structure with concrete block infill; however, the presence of masonry buildings becomes significant (between 25 and 45 % of the reinforced concrete buildings) in rural areas and informal settlements on the outskirts, where the estimated damage is higher. The influence of the soil effect on the damage spatial distribution is evident in both cities. We have found that the percentage of uninhabitable buildings in soft soil areas may be double the percentage obtained in nearby districts located in hard soil. These results reveal that a new seismic catastrophe of similar or even greater consequences than the 2010 Haiti earthquake might happen if the earthquake resilience is not improved in the country. Nowadays, the design of prevention actions and mitigation policies is the best instrument the society has to face seismic risk. In this sense, the results of this research might contribute to define measures oriented to earthquake risk reduction in Haiti, which should be a real priority for national and international institutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The commercial data acquisition systems used for seismic exploration are usually expensive equipment. In this work, a low cost data acquisition system (Geophonino) has been developed for recording seismic signals from a vertical geophone. The signal goes first through an instrumentation amplifier, INA155, which is suitable for low amplitude signals like the seismic noise, and an anti-aliasing filter based on the MAX7404 switched-capacitor filter. After that, the amplified and filtered signal is digitized and processed by Arduino Due and registered in an SD memory card. Geophonino is configured for continuous registering, where the sampling frequency, the amplitude gain and the registering time are user-defined. The complete prototype is an open source and open hardware system. It has been tested by comparing the registered signals with the ones obtained through different commercial data recording systems and different kind of geophones. The obtained results show good correlation between the tested measurements, presenting Geophonino as a low-cost alternative system for seismic data recording.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La red docente ha realizado durante el curso 2014/15 un proyecto para la recopilación de las evidencias para la acreditación en la ANECA del Grado en Ingeniería en Sonido e Imagen en Telecomunicación de la Escuela Politécnica Superior. Nos centramos en los criterios 8 y 9 de Acredita plus. Se relacionan las competencias del título y las competencias ENAEE. Cada competencia ENAEE se desarrolla por un grupo de asignaturas con una dedicación determinada de créditos. El informe de acreditación plus en el que se ha trabajado es para la obtención del sello EUR-ACE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se plantea estudiar los criterios, organizar las evidencias y recopilar los resultados que permiten desarrollar el auto-informe para la acreditación título en la ANECA de Máster Universitario en Ingeniería de Telecomunicación de la Universidad de Alicante. Por ello, la red de investigación en docencia universitaria planteada implica a todas las asignaturas de estos estudios, incluido el Trabajo Fin de Máster. Para alcanzar los objetivos se comienza por la recopilación detallada de los criterios para el desarrollo del auto-informe y la documentación a cumplimentar. En la organización de las evidencias relacionadas con cada uno de los criterios a evaluar, generadas en cada curso de implantación del título, el trabajo se ha centrado en el criterio 6 (Resultados del aprendizaje) y el criterio 7 (Indicadores de satisfacción). Las tablas comparativas elaboradas, donde se resumen los resultados del aprendizaje, facilitan la puesta en común y la concreción de un plan de mejora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past and recent observations have shown that the local site conditions significantly affect the behavior of seismic waves and its potential to cause destructive earthquakes. Thus, seismic microzonation studies have become crucial for seismic hazard assessment, providing local soil characteristics that can help to evaluate the possible seismic effects. Among the different methods used for estimating the soil characteristics, the ones based on ambient noise measurements, such as the H/V technique, become a cheap, non-invasive and successful way for evaluating the soil properties along a studied area. In this work, ambient noise measurements were taken at 240 sites around the Doon Valley, India, in order to characterize the sediment deposits. First, the H/V analysis has been carried out to estimate the resonant frequencies along the valley. Subsequently, some of this H/V results have been inverted, using the neighborhood algorithm and the available geotechnical information, in order to provide an estimation of the S-wave velocity profiles at the studied sites. Using all these information, we have characterized the sedimentary deposits in different areas of the Doon Valley, providing the resonant frequency, the soil thickness, the mean S-wave velocity of the sediments, and the mean S-wave velocity in the uppermost 30 m.