37 resultados para Rodríguez Adrados, Francisco
Resumo:
We show here that a physical activation process that is diffusion-controlled yields an activated carbon whose chemistry – both elemental and functional – varies radially through the particles. For the ∼100 μm particles considered here, diffusion-controlled activation in CO2 at 800 °C saw a halving in the oxygen concentration from the particle periphery to its center. It was also observed that this activation process leads to an increase in keto and quinone groups from the particle periphery towards the center and the inverse for other carbonyls as well as ether and hydroxyl groups, suggesting the two are formed under CO2-poor and -rich environments, respectively. In contrast to these observations, use of physical activation processes where diffusion-control is absent are shown to yield carbons whose chemistry is radially invariant. This suggests that a non-diffusion limited activation processes should be used if the performance of a carbon is dependent on having a specific optimal pore surface chemical composition.
Resumo:
We compare the pore size distribution of a well-characterized activated carbon derived from model-dependent, adsorption integral equation (AIE) methods with those from model-independent, immersion calorimetry and isosteric heat analyses. The AIE approach applied to nitrogen gave a mean pore width of 0.57 nm; the CO2 distribution exhibited wider dispersion. Spherical model application to CO2 and diffusion limitations for nitrogen and argon were proposed as primary reasons for inconsistency. Immersion enthalpy revealed a sharp decrease in available area equivalent to a cut-off due to molecular exclusion when the accessible surface was assessed against probe kinetic diameter. Mean pore width was identified as 0.58 ± 0.02 nm, endorsing the underlying assumptions for the nitrogen-based AIE approach. A comparison of the zero-coverage isosteric heat of adsorption for various non-polar adsorptives by the porous test sample was compared with the same adsorptives in contact with a non-porous reference adsorbent, leading to an energy ratio or adsorption enhancement factor. A linear relationship between the energy ratio and probe kinetic diameter indicated a primary pore size at 0.59 nm. The advantage of this enthalpy, model-independent methods over AIE were due to no assumptions regarding probe molecular shape, and no assumptions for pore shape and/or connectivity.
Resumo:
Fixed bed CO2 adsorption tests were carried out in model flue-gas streams onto two commercial activated carbons, namely Filtrasorb 400 and Nuchar RGC30, at 303 K, 323 K and 353 K. Thermodynamic adsorption results highlighted that the presence of a narrower micropore size distribution with a prevailing contribution of very small pore diameters, observed for Filtrasorb 400, is a key factor in determining a higher CO2 capture capacity, mostly at low temperature. These experimental evidences were also corroborated by the higher value of the isosteric heat derived for Filtrasorb 400, testifying stronger interactions with CO2 molecules with respect to Nuchar RGC30. Dynamic adsorption results on the investigated sorbents highlighted the important role played by both a greater contribution of mesopores and the presence of wider micropores for Nuchar RGC30 in establishing faster capture kinetics with respect to Filtrasorb 400, in particular at 303 K. Furthermore, the modeling analysis of 15% CO2 breakthrough curves allowed identifying intraparticle diffusion as the rate-determining step of the process.
Resumo:
Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization.
Resumo:
One of the main concerns in the technological application of several metal–organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.
Resumo:
In this work results for the flexural strength and the thermal properties of interpenetrated graphite preforms infiltrated with Al-12wt%Si are discussed and compared to those for packed graphite particles. To make this comparison relevant, graphite particles of four sizes in the range 15–124 μm, were obtained by grinding the graphite preform. Effects of the pressure applied to infiltrate the liquid alloy on composite properties were investigated. In spite of the largely different reinforcement volume fractions (90% in volume in the preform and around 50% in particle compacts) most properties are similar. Only the Coefficient of Thermal Expansion is 50% smaller in the preform composites. Thermal conductivity of the preform composites (slightly below 100 W/m K), may be increased by reducing the graphite content, alloying, or increasing the infiltration pressure. The strength of particle composites follows Griffith criterion if the defect size is identified with the particle diameter. On the other hand, the composites strength remains increasing up to unusually high values of the infiltration pressure. This is consistent with the drainage curves measured in this work. Mg and Ti additions are those that produce the most significant improvements in performance. Although extensive development work remains to be done, it may be concluded that both mechanical and thermal properties make these materials suitable for the fabrication of piston engines.