20 resultados para pirolisi, PFU, syngas, char, impianto pilota, pneumatici


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal degradation of flexible polyurethane foam has been studied under different conditions by thermogravimetric analysis (TG), thermogravimetric analysis-infrared spectrometry (TG-IR) and thermogravimetric analysis-mass spectrometry (TG-MS). For the kinetic study, dynamic and dynamic+isothermal runs were performed at different heating rates (5, 10 and 20 °C min−1) in three different atmospheres (N2, N2:O2 4:1 and N2:O2 9:1). Two reaction models were obtained, one for the pyrolysis and another for the combustion degradation (N2:O2 4:1 and N2:O2 9:1), simultaneously correlating the experimental data from the dynamic and dynamic+isothermal runs at different heating rates. The pyrolytic model considered consisted of two consecutive reactions with activation energies of 142 and 217.5 kJ mol−1 and reaction orders of 0.805 and 1.246. Nevertheless, to simulate the experimental data from the combustion runs, three consecutive reactions were employed with activation energies of 237.9, 103.5 and 120.1 kJ mol−1, and reaction orders of 2.003, 0.778 and 1.025. From the characterization of the sample employing TG-IR and TG-MS, the results obtained showed that the FPUF, under an inert atmosphere, started the decomposition breaking the urethane bond to produce long chains of ethers which were degraded immediately in the next step. However, under an oxidative atmosphere, at the first step not only the urethane bonds were broken but also some ether polyols started their degradation which finished at the second step producing a char that was degraded at the last stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, a very detailed study of the reforming of syngas produced in the decomposition of Posidonia oceanica is done. The effect of the presence of different amounts of dolomite is analyzed. Also pyrolysis is studied, in nitrogen atmosphere, and gasification in the presence of air, oxygen and different amounts of steam. A detailed discussion on formation and destruction of tars is done. Furthermore, the effect of the heating rate in the decomposition and the residence time of the evolved gases are discussed. Syngas with ratio H2/CO from 0.3 to ca. 3 can be obtained from this interesting material. Marine species (microalgae) are usually studied with the aim of cultivating them for gas or oil production, but in this paper we draw attention to the possibility of using a natural resource with a very small impact in the ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes a new synthesis route for bone chars using a CO2 atmosphere and their behavior as adsorbent for fluoride removal from water. Specifically, we have performed a detailed analysis of the adsorption properties of bone char samples obtained at different carbonization conditions and a comparative study with samples of bone char obtained via pyrolysis under nitrogen. Experimental results show that the nature of the gas atmosphere (CO2 versus N2) and the carbonization temperature play a major role to achieve an effective bone char for water defluoridation. In particular, the best adsorption properties of bone char for fluoride removal are obtained with those samples synthesized at 700 °C. Carbonization temperatures above 700 °C under CO2 atmosphere cause the dehydroxylation of the hydroxyapatite in the bone char, thus reducing its fluoride adsorption capacity. The maximum fluoride adsorption capacity for the bone char obtained in this study under CO2 atmosphere (i.e., 5.92 mg/g) is higher than those reported for commercial bone chars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.