108 resultados para Nutrición y Bromatología
Resumo:
Active packaging is becoming an emerging food technology to improve quality and safety of food products. One of the most common approaches is based on the release of antioxidant/antimicrobial compounds from the packaging material. In this work an antifungal active packaging system based on the release of carvacrol and thymol was optimized to increase the post-harvest shelf life of fresh strawberries and bread during storage. Thermal properties of the developed packaging material were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Volatile compounds in food samples contained in active packaging systems were monitored by using headspace solid phase microextraction followed by gas chromatography analysis (HS-SPMEGC-MS) at controlled conditions. The obtained results provided evidences that exposure to carvacrol and thymol is an effective way to enlarge the quality of strawberries and bread samples during distribution and sale.
Resumo:
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.
Resumo:
Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.
Resumo:
Antioxidant nano-biocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite®30B (C30B), at different concentrations. A full structural, thermal, mechanical and functional characterization of the developed nano-biocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas some decrease in thermal stability was observed. TEM analyses corroborated the good dispersion of C30B into the PCL macromolecular structure as already asserted by XRD tests, since no large aggregates were observed. A reduction in oxygen permeability and increase in elastic modulus were obtained for films containing the nanoclay. Finally, the presence of the nanoclay produced a decrease in the HT release from films due to some interaction between HT and C30B. Results proved that these nano-biocomposites can be an interesting and environmentally-friendly alternative for active food packaging applications with antioxidant performance.
Resumo:
The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.
Resumo:
Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material.
Resumo:
The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p < 0.05) was observed due to the etching effect of DBD plasma, which was correlated with the increase in the diffusion rate of thymol in the food simulant. The diffusion of thymol from the zein film was measured in aqueous solution. The kinetics of thymol release followed the Fick’s law of diffusion as shown by the high correlation coefficients between experimental and theoretical data. No significant change (p > 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment.
Resumo:
This work explores the multi-element capabilities of inductively coupled plasma - mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238 u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min−1) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides (e.g. Li and Be) could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS.
Resumo:
Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.
Resumo:
Active edible films were prepared by adding carvacrol into sodium caseinate (SC) and calcium caseinate (CC) matrices plasticized with two different glycerol concentrations (25 and 35 wt%) prepared by solvent casting. Functional characterisation of these bio-films was carried out by determination of some of their physico-chemical properties, such as colour, transparency, oxygen barrier, wettability, dye permeation properties and antibacterial effectiveness against Gram negative and Gram positive bacteria. All films exhibited good performance in terms of optical properties in the CIELab space showing high transparency. Carvacrol was able to reduce CC oxygen permeability and slightly increased the surface hydrophobicity. Dye diffusion experiments were performed to evaluate permeation properties. The diffusion of dye through films revealed that SC was more permeable than CC. The agar diffusion method was used for the evaluation of the films antimicrobial effectiveness against Escherichia coli and Staphylococcus aureus. Both SC and CC edible films with carvacrol showed inhibitory effects on both bacteria.
Resumo:
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Resumo:
Three HPLC methods were optimised for the determination of citric acid, succinic acid and ascorbic acid using a photodiode array detector and fructose, glucose and sucrose using a refractive index in twenty eight citrus juices. The analysis was completed in <16 min. Two different harvests were taken into account for this study. For the season 2011, ascorbic acid content was comprised between 19.4 and 59 mg vitamin C/100 mL; meanwhile for the season 2012, the content was slightly higher for most of the samples ranging from 33.5 to 85.3 mg vitamin C/100 mL. Moreover, the citric acid content in orange juices ranged between 9.7 and 15.1 g L−1, while for clementines the content was clearly lower (i.e. from 3.5 to 8.4 g L−1). However, clementines showed the highest sucrose content with values near to 6 g/100 mL. Finally, a cluster analysis was applied to establish a classification of the citrus species.
Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid
Resumo:
Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.
Resumo:
Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself.
Resumo:
Poly(lactic acid) (PLA)-based high performance nano-biocomposites were prepared to be used in active food packaging. Pristine (CNC) and surfactant modified cellulose nanocrystals (s-CNC) with silver (Ag) nanoparticles were used as the matrix modifiers. Binary and ternary systems were prepared. Morphological investigations revealed the good distribution of silver nanoparticles in PLA ternary systems. The combination of s-CNC and Ag nanoparticles increased the barrier effect of the produced films while the results of overall migration for the PLA nano-biocomposites revealed that none of the samples exceeded the overall migration limit, since results were well below 60 mg kg−1 of simulant.