9 resultados para whole steam toasted soybean nutrition value
em University of Queensland eSpace - Australia
Resumo:
Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.
Resumo:
Genotype, sulphur (S) nutrition and soil-type effects on spring onion quality were assessed using a 32-conducting polymer sensor E-nose. Relative changes in sensor resistance ratio (% dR/R) varied among eight spring onion genotypes. The % dR/R was reduced by S application in four of the eight genotypes. For the other four genotypes, S application gave no change in % dR/R in three, and increased % dR/R in the other. E-nose classification of headspace volatiles by a two-dimensional principal component analysis (PCA) plot for spring onion genotypes differed for S fertilisation vs. no S fertilisation. Headspace volatiles data set clusters for cv. 'White Lisbon' grown on clay or on sandy loam overlapped when 2.9 [Mahalanobis distance value (D2) = 1.6], or 5.8-(D2 = 0.3) kg S ha-1 was added. In contrast, clear separation (D2 = 7.5) was recorded for headspace volatile clusters for 0 kg S hd-1 on clay vs. sandy loam. Addition of 5.8 kg S ha-1 increased pyruvic acid content (mmole g-1 fresh weight) by 1.7-fold on average across the eight genotypes. However, increased S from 2.9 to 5.8 kg ha-1 did not significantly (P > 0.05) influence % dR/R, % dry matter (DM) or total soluble solids (TSS) contents, but significantly (P < 0.05) increased pyruvic acid content. TSS was significantly (P < 0.05) reduced by S addition, while % DM was unaffected. In conclusion, the 32-conducting polymer E-nose discerned differences in spring onion quality that were attributable to genotype and to variations in growing conditions as shown by the significant (P < 0.05) interaction effects for % dR/R.
Resumo:
The nutritive value of transgenic peas expressing an a-amylase inhibitor (alpha-Ail) was evaluated with broiler chickens. The effects of feeding transgenic peas on the development of visceral organs associated with digestion and nutrient absorption were also examined. The chemical composition of the conventional and the transgenic peas used in this study were similar. In the two feeding trials, that were conducted normal and transgenic peas were incorporated into a maize-soybean diet at concentrations up to 500 g kg(-1). The diets were balanced to contain similar levels of apparent metabolisable energy (AME) and amino acids. In the first trial, the birds were fed the diets from 3 to 17days post-hatching and with levels of transgenic peas at 250 g kg(-1) or greater there was a significant reduction in body weight but an increase in feed intake resulting in deceased feed conversion efficiency. In the second trial, in which the birds were fed diets containing 300 g kg(-1) transgenic peas until 40 days of age, growth performance was significantly reduced. It was also demonstrated that the ileal starch digestibility coefficient (0.80 vs 0.42) was significantly reduced in the birds fed transgenic peas. Determination of AME and ileal digestibility of amino acids in 5-week-old broilers demonstrated a significant reduction in AME (12.12 vs 5.08 MJ kg(-1) DM) in the birds fed the transgenic peas. The AME value recorded for transgenic peas reflected the lower starch digestibility of this line. Real digestion of protein and amino acids was unaffected by treatment. Expression of a-Ail in peas did not appear to affect bird health or the utilisation of dietary protein. However, the significant reduction in ileal digestion of starch in transgenic peas does reduce the utility of this feedstuff in monogastric diets where efficient energy utilisation is required. (c) 2006 Society of Chemical Industry.
Resumo:
In this experiment, creatinine (C) excretion by sheep was measured when they were fed different diets at different levels of intake. Creatinine excretion was not affected by the level of feed intake or the addition of salt to lucerne-based diets. However, differences between individual animals were significant. Creatinine excretion was significantly affected by diets, which were formulated by combining different amounts of lucerne chaff, oaten chaff and sorghum. It was also found that there were significant diurnal changes in the ratios of purine derivatives to creatinine (PD:C) in 3 hourly urine samples when the animals were fed either once or twice daily, but the average value for the PD:C ratio of any two urine samples taken 12 h apart was close to the daily mean. The results of this experiment suggest that if separate determination of the creatinine excretion by individual animals is made and the average value of the ratio of PD:C in two spot urine samples taken 12 h apart is used to predict PD excretion by spot urine sampling, microbial nitrogen flow can be estimated more accurately than when a fixed value of creatinine excretion is used for all animals and only a single urine sample is taken. (c) 2005 Elsevier B.V. All rights reserved.