150 resultados para temperature-programmed techniques
em University of Queensland eSpace - Australia
Resumo:
In this paper, the organophilic property of MCM-41 was studied and compared with hydrophobic silicalite-l using adsorption and temperature-programmed desorption (TPD) methods. The surface heterogeneity of MCM-41 was evaluated in terms of activation energy for desorption (E-d) and isosteric heat of adsorption (q(st)). Results show that MCM-41 has a higher affinity to polar organic compounds than to non-polar organics while silicalite-l has a higher affinity to non-polar organic compounds than to polar organics. This organophilic behaviour of MCM-41 is attributed to its surface heterogeneity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Activated carbon as catalyst support was treated with HCl, HNO3, and HF and the effects of acid treatments on the properties of the activated carbon support were studied by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). Ni catalysts supported on untreated and treated activated carbons were prepared, characterized and tested for the reforming reaction of methane with carbon dioxide. It is found that acid treatment significantly changed the surface chemical properties and pore structure of the activated carbon. The surface area and pore volume of the carbon supports are generally enhanced upon acid treatment due to the removal of impurities present in the carbon. The adsorption capacity of Ni2+ on the carbon supports is also increased, and the increase can be closely correlated with the surface acidity. The impregnation of nickel salts decreases the surface area and pore volume of carbon supports both in micropores and mesopores. Acid treatment results in a more homogeneous distribution of the nickel salt in carbon. When the impregnated carbons are heated in inert atmosphere, there exists a redox reaction between nickel oxide and the carbon. Catalytic activity tests for methane reforming with carbon dioxide show that the activity of nickel catalysts based on the acid-treated carbon supports is closely related with the surface characteristics of catalysts. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.
Resumo:
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)(3)Si-OH, hydrogen-bonded, (SiO)(3)Si-OH-OH-Si(SiO)(3), and geminal, (SiO)(2)Si(OH)(2), can be observed. The number of silanol groups/nm(2), alpha(OH), as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol(-1), respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.
Resumo:
Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.
Resumo:
A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.
Resumo:
The pore structure stability of MCM-41 materials upon hydration/dehydration was studied by XRD, Si-29 MAS NMR, and gravimetric adsorption techniques. Results demonstrated that collapses of the pore structure of MCM-41 occurred upon rehydration at room temperature due to the hydrolysis of the bare Si-O-Si(Al) bonds in the presence of water vapor. Full structure collapses of MCM-41 were found to occur when a MCM-41 sample was left in air for three months. It is also suggested that care must be taken when XRD is used to evaluate the structure property of MCM-41 materials to avoid the possible adverse effects of water vapor.
Resumo:
The paper presents methods for measurement of convective heat transfer distributions in a cold flow, supersonic blowdown wind tunnel. The techniques involve use of the difference between model surface temperature and adiabatic wall temperature as the driving temperature difference for heat transfer and no active heating or cooling of the test gas or model is required. Thermochromic liquid crystals are used for surface temperature indication and results presented from experiments in a Mach 3 flow indicate that measurements of the surface heat transfer distribution under swept shock wave boundary layer interactions can be made. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior of the specific heat.
Resumo:
The importance of sticky behaviour of amorphous food powders has been recognized over many decades in the food industry due to its influence on process and handling abilities and quality of the powders. This paper emphasizes the role of stickiness in the food powder industry as well as reviews the stickiness characterization techniques developed to date. This paper also attempts to correlate the stickiness behaviour of food powders to the instrumental analysis such as glass transition temperature. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
During the austral summer of 2001/2002, a coral epizootic occurred almost simultaneously with a bleaching event on the fringing reefs of Magnetic Island (Great Barrier Reef region), Australia. This resulted in a 3- to 4-fold increase in the mean percentage of partial mortality rate in a population of the hard coral Montipora aequituberculata. The putative disease state, ‘atramentous necrosis’, was observed on both bleached and normally-pigmented M. aequituberculata, and presented blackened lesions that spread within days across the colony surface and throughout the population. Diseased portions of the corals were only visible for 3 to 4 wk, with diseased tissues becoming covered in sediment and algae, which rapidly obscured evidence of the outbreak. Diseased colonies were again observed in the summer of 2002/2003 after being absent over the 2002 winter. Analysis of when diseased and bleached corals were first observed, and when and where the mortality occurred on individual colonies, indicated virtually all the mortality over the summer could be attributed to the disease and not to the bleaching. Fluorescence in situ hybridisation (FISH) techniques and cloning, and analysis of the 16S rRNA genes from diseased coral tissue, identified a mixed microbial assemblage in the diseased tissues particularly within the Alphaproteobacteria, Firmicutes and Bacteroidetes. While it is not possible in this study to distinguish between a disease-causing microbial community versus secondary invaders, the bacterial 16S rDNA sequences identified within the blackened lesions demonstrated high similarity to sequences from black band disease and white plague infected corals, suggesting either common aetiological agents or development of a bacterial community that is specific to degrading coral tissues. Temperature-induced coral disease outbreaks, with the potential for elevated levels of mortality, may represent an added problem for corals during the warmer summer months and an added dimension to predicted increases in water temperature from climate change.
Resumo:
An analysis of thermal degradation products evolved during the melt processing of organo-layered silicates (OLS) was carried out via the use of a solid phase microextraction (SPME) technique. Two commerical OLSs and one produced in-house were prepared for comparision. The solid phase microextraction technique proved to be a very effective technique for investigating the degradation of the OLS at a specific processing temperature. The results showed that most available OLSs will degrade under typical conditions required for the melt processing of many polymers, including thermoplastic polyurethanes. It is suggested that these degradation products may lead to changes in the structure and properties of the final polymer, particularly in thermoplastic polyurethanes, which seem significantly succeptable to the presence of these products. It is also suggested that many commercially available OLSs are produced in such a way that results in an excess of unbound organic modifier, giving rise to a greater quantity of degradation products. All OLSs where compared and characterised by TGA and GC-MS. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Materials and mechanical characteristics of the low temperature PECVD silicon nitrides have been investigated using various analytical and testing techniques. TEM and SEM examinations reveal that there is no distinct microstructural difference existing between the films deposited under different conditions. However, their mechanical properties determined by nanoindentation indicate otherwise. The variations in mechanical properties with deposition conditions are found to be strongly correlated to the change in silicon-to-nitrogen ratio in the film.