168 resultados para single molecule spectroscopy

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proposal for using single molecules as nanoprobes capable of detecting the trajectory of an elementary charge is discussed in detail. Presented numerical simulations prove that this singlemolecule technique allows determination of a three-dimensional single-electron displacement within a few seconds with an accurocy better than 0.006 nm. Surprisingly, this significantly exceeds the accuracy with which the probe;, molecule itself can be localized (given the same measuring time by means of single-molecule microscopy. It is also shown that the optimal concentration of probe molecules in the vicinity of:the electron (i.e. the concentration which provides the best accuracy of the inferred electron displacement) is of the order of 10(-5) m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of single molecules coupled to a thermal bath is studied both experimentally and theoretically. The effect of different fluctuations on the coherence properties of resonance fluorescence is considered first. Coherence is measured in an interference experiment where a single molecule is used as a light source. A standard approach based on the optical Bloch equations apparently provides quite an accurate description of the interference experiment. Systems with long correlation times (where spectra are time dependent on any timescale) are considered next. It is shown that intensity-time-frequency correlation spectroscopy, which provides both high signal-to-noise ratio and high time resolution, is very suitable for such a case. The Bloch equations are further tested in an experiment where the shape of an excitation spectral line of a single molecule is accurately measured over six orders of magnitude of the exciting laser power. Significant deviations from the predictions of the Bloch equations are found. The role of critical parameters-the correlation time of the bath, the Rabi oscillation period, and the coupling constant between the bath and the molecule-is discussed. The paper also includes a short general introduction to the methodology of single-molecule studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A broad review of technologically focused work concerning biomolecules at interfaces is presented. The emphasis is on developments in interfacial biomolecular engineering that may have a practical impact in bioanalysis, tissue engineering, emulsion processing or bioseparations. We also review methods for fabrication in an attempt to draw out those approaches that may be useful for product manufacture, and briefly review methods for analysing the resulting interfacial nanostructures. From this review we conclude that the generation of knowledge and-innovation at the nanoscale far exceeds our ability to translate this innovation into practical outcomes addressing a market need, and that significant technological challenges exist. A particular challenge in this translation is to understand how the structural properties of biomolecules control the assembled architecture, which in turn defines product performance, and how this relationship is affected by the chosen manufacturing route. This structure-architecture-process-performance (SAPP) interaction problem is the familiar laboratory scale-up challenge in disguise. A further challenge will be to interpret biomolecular self- and directed-assembly reactions using tools of chemical reaction engineering, enabling rigorous manufacturing optimization of self-assembly laboratory techniques. We conclude that many of the technological problems facing this field are addressable using tools of modem chemical and biomolecular engineering, in conjunction with knowledge and skills from the underpinning sciences. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new addition to the family of single-molecule magnets is reported: an Fete cage stabilized with benzoate and pyridonate ligands. Monte Carlo methods have been used to derive exchange parameters within the cage, and hence model susceptibility behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hypothesis that lipid rafts exist in plasma membranes and have crucial biological functions remains controversial. The lateral heterogeneity of proteins in the plasma membrane is undisputed, but the contribution of cholesterol-dependent lipid assemblies to this complex, non-random organization promotes vigorous debate. In the light of recent studies with model membranes, computational modelling and innovative cell biology, I propose an updated model of lipid rafts that readily accommodates diverse views on plasma-membrane micro-organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the electrical transport of a harmonically bound, single-molecule C-60 shuttle operating in the Coulomb blockade regime, i.e. single electron shuttling. In particular, we examine the dependance of the tunnel current on an ultra-small stationary force exerted on the shuttle. As an example, we consider the force exerted on an endohedral N@C-60 by the magnetic field gradient generated by a nearby nanomagnet. We derive a Hamiltonian for the full shuttle system which includes the metallic contacts, the spatially dependent tunnel couplings to the shuttle, the electronic and motional degrees of freedom of the shuttle itself and a coupling of the shuttle's motion to a phonon bath. We analyse the resulting quantum master equation and find that, due to the exponential dependence of the tunnel probability on the shuttle-contact separation, the current is highly sensitive to very small forces. In particular, we predict that the spin state of the endohedral electrons of N@C-60 in a large magnetic gradient field can be distinguished from the resulting current signals within a few tens of nanoseconds. This effect could prove useful for the detection of the endohedral spin-state of individual paramagnetic molecules such as N@C-60 and P@C-60, or the detection of very small static forces acting on a C-60 shuttle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (Pls) that are derived from a 43 kDa precursor protein, NaProPl. NaProPl contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native Pls. An unusual feature of NaProPl is that the structural domains lie across adjacent repeats and that the sixth Pl domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPl repeat (aPl1) forms a basis for unravelling the mechanism by which this protein may have evolved, Results: The three-dimensional structure of aPl1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native Pls. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPl, exists as a disordered loop in aPl1. The presence of this loop in aPl1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. Conclusions: A single repeat from NaProPl is capable of folding into a compact globular domain that displays native-like Pl activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPl evolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication, In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC50 values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC50 value of 375 nM and a maximally effective concentration caused 91% block, [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in similar to 80% of neurons, with an IC50 value of 1.4 nM and 46% maximal block of the total current, The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the cu-conotoxins PnIA or PnIB, and by mecamylamine. H-1 NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and II of PnIA and PnIB influence potency and determine selectivity among alpha 7 and other nAChR subtypes, including alpha 3 beta 2 and alpha 3 beta 4, Four distinct components of the nicotinic ACh-induced current in mammalian parasympathetic neurons have been dissected with these conopeptides.