63 resultados para rheological behavior
em University of Queensland eSpace - Australia
Resumo:
The effect of an organically surface modified layered silicate on the viscosity of various epoxy resins of different structures and different functionalities was investigated. Steady and dynamic shear viscosities of the epoxy resins containing 0-10 wt% of the organoclay were determined using parallel plate rheology. Viscosity results were compared with those achieved through addition of a commonly used micron-sized CaCO3 filler. It was found that changes in viscosities due to the different fillers were of the same order, since the layered silicate was only dispersed on a micron-sized scale in the monomer (prior to reaction), as indicated by X-ray diffraction measurements. Flow activation energies at a low frequency were determined and did not show any significant changes due to the addition of organoclay or CaCO3. Comparison between dynamic and steady shear experiments showed good agreement for low layered silicate concentrations below 7.5 wt%, i.e. the Cox-Merz rule can be applied. Deviations from the Cox-Merz rule appeared at and above 10 wt%, although such deviations were only slightly above experimental error. Most resin organoclay blends were well predicted by the Power Law model, only concentrations of 10 wt% and above requiring the Herschel-Buckley (yield stress) model to achieve better fits. Wide-angle X-ray measurements have shown that the epoxy resin swells the layered silicate with an increase in the interlayer distance of approximately 15 Angstrom, and that the rheology behavior is due to the lateral, micron-size of these swollen tactoids.
Resumo:
The pumping characteristics of four Australian honey samples were investigated in a straight pipe. Six flow rates (100-500 kg h(-1)) were studied at three temperatures (35-50degreesC). The pressure loss increased with an increase in the length of the pipe, as the low rate was increased and as the temperature was reduced. In the 25.4 mm-pipe, the Reynolds number ranged from 0.2-32.0 and are substantially less than the critica value (2040-2180) for laminar condition in the system. The relationship between the wall shear stress and shear rate approximated power-law behaviour, and the power-law index was not significantly (p>0.05) different from 1.0. The honey samples exhibited Newtonian behaviour at all the temperatures and this was confirmed by rheometric studies using Couette geometry. A friction chart was generated independent of temperature and the type of honey. An equation was developed to predict the pressure loss of the honey in a typical pipeline at any temperature once the viscosity-temperature relationship had been established.
Resumo:
Partially solid commercial Al-Si and Mg-Al alloys have been deformed in shear during solidification using vane rheometry. The dendritic mush was deformed for a short period at 29% solid and allowed to cool naturally after deformation. Both alloys exhibited yield point behaviour and deformation was highly localised at the surface of maximum shear stress. The short period of deformation was found to have a distinct impact on the as-cast microstructure leading to fragmented dendrites in the deformation region of both alloys. In the case of the Mg-Al alloy, a concentrated region of interdendritic porosity was also observed in the deformation region. Concentrated porosity was not observed in the Al-Si alloy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
The influence of an organically modified clay on the curing behavior of three epoxy systems widely used in the aerospace industry and of different structures and functionalities, was studied. Diglycidyl ether of bisphenol A (DGEBA), triglycidyl p-amino phenol (TGAP) and tetraglycidyl diamino diphenylmethane (TGDDM) were mixed with an octadecyl ammonium ion modified organoclay and cured with diethyltoluene diamine (DETDA). The techniques of dynamic mechanical thermal analysis (DMTA), chemorheology and differential scanning calorimetry (DSC) were applied to investigate gelation and vitrification behavior, as well as catalytic effects of the clay on resin cure. While the formation of layered silicate nanocomposite based on the bifunctional DGEBA resin has been previously investigated to some extent, this paper represents the first detailed study of the cure behavior of different high performance, epoxy nanocomposite systems.
Resumo:
The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.
Resumo:
This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the evolution of the state of dispersion of organically modified montmorillonites in epoxy or amine precursors. The epoxy prepolymer is a diglycidyl ether of bisphenol A (DGEBA) and the curing agent is an aliphatic diamine with a polyoxypropylene backbone (Jeffamine D2000). The clay dispersion is evaluated at the platelet scale (nanoscopic scale) from X-ray spectrometry [wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS)] and at the aggregates scale (microscopic scale) from rheological analysis. The organoclays used form gels in the monomers above the percolation threshold if no shear is applied and present a mechanical gel/sol transition when shear stress increases. Gel strength and viscosity at high shear rates are linked to the nanometric state of dispersion and reveal the existence of two different organizations depending on organoclay/monomer interactions: (i) When the clay shows good interactions with the monomer, a significant swelling of the clay galleries by the monomer is obtained. These swollen particles lead to formation of weak gels which after shearing give high relative viscosity fluids. (ii) When the clay develops poor interactions with the monomer, the clay tends to reduce its exchange surface with the monomer and leads to a strongly connected gel. Shear breaks down this physical network leading to a very low relative viscosity fluid composed of nonswollen particles keeping a high aspect ratio. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
In the first of two articles presenting the case for emotional intelligence in a point/counterpoint exchange, we present a brief summary of research in the field, and rebut arguments against the construct presented in this issue.We identify three streams of research: (1) a four-branch abilities test based on the model of emotional intelligence defined in Mayer and Salovey (1997); (2) self-report instruments based on the Mayer–Salovey model; and (3) commercially available tests that go beyond the Mayer–Salovey definition. In response to the criticisms of the construct, we argue that the protagonists have not distinguished adequately between the streams, and have inappropriately characterized emotional intelligence as a variant of social intelligence. More significantly, two of the critical authors assert incorrectly that emotional intelligence research is driven by a utopian political agenda, rather than scientific interest. We argue, on the contrary, that emotional intelligence research is grounded in recent scientific advances in the study of emotion; specifically regarding the role emotion plays in organizational behavior. We conclude that emotional intelligence is attracting deserved continuing research interest as an individual difference variable in organizational behavior related to the way members perceive, understand, and manage their emotions.
Resumo:
In this second counterpoint article, we refute the claims of Landy, Locke, and Conte, and make the more specific case for our perspective, which is that ability-based models of emotional intelligence have value to add in the domain of organizational psychology. In this article, we address remaining issues, such as general concerns about the tenor and tone of the debates on this topic, a tendency for detractors to collapse across emotional intelligence models when reviewing the evidence and making judgments, and subsequent penchant to thereby discount all models, including the ability-based one, as lacking validity. We specifically refute the following three claims from our critics with the most recent empirically based evidence: (1) emotional intelligence is dominated by opportunistic academics-turned-consultants who have amassed much fame and fortune based on a concept that is shabby science at best; (2) the measurement of emotional intelligence is grounded in unstable, psychometrically flawed instruments, which have not demonstrated appropriate discriminant and predictive validity to warrant/justify their use; and (3) there is weak empirical evidence that emotional intelligence is related to anything of importance in organizations. We thus end with an overview of the empirical evidence supporting the role of emotional intelligence in organizational and social behavior.
Resumo:
This article provides a review of recent developments in two topical areas of research in contemporary organizational behavior: diversity and emotions. In the section called “Diversity,”we trace the history of diversity research, explore the definitions and paradigms used in treatments of diversity, and signal new areas of interest. We conclude that organizational behavior in the 21st century is evolving to embrace a more eclectic and holistic view of humans at work. In the section called “Emotions,” we turn our attention to recent developments in the study of emotions in organizations. We identify four major topics: mood theory, emotional labor, affective events theory (AET), and emotional intelligence, and argue that developments in the four domains have significant implications for organizational research, and the progression of the study of organizational behavior. As with the study of diversity, the topic of emotions in the workplace is shaping up as one of the principal areas of development in management thought and practice for the next decade. Finally, we discuss in our conclusion how these two areas are being conceptually integrated, and the implications for management scholarship and research in the contemporary world.
Resumo:
The aim of this mental health promotion initiative was to evaluate the effectiveness of a universally delivered group behavioral family intervention (BFI) in preventing behavior problems in children. This study investigates the transferability of an efficacious clinical program to a universal prevention intervention delivered through child and community health services targeting parents of preschoolers within a metropolitan health region. A quasiexperimental two-group (BFI, n=804 vs. Comparison group, n=806) longitudinal design followed preschool aged children and their parents over a 2-year period. BFI was associated with significant reductions in parent-reported levels of dysfunctional parenting and parent-reported levels of child behavior problems. Effect sizes on child behavior problems ranged from large (.83) to moderate (.47). Positive and significant effects were also observed in parent mental health, marital adjustment, and levels of child rearing conflict. Findings are discussed with respect to their implication for significant population reductions in child behavior problems as well as the pragmatic challenges for prevention science in encouraging both the evaluation and uptake of preventive initiatives in real world settings.
Resumo:
This study evaluated two variants of a behavioral parent training program known as Stepping Stones Triple P (SSTP) using 74 preschool-aged children with developmental disabilities. Families were randomly allocated to an enhanced parent training intervention that combined parenting skills and care-giving coping skills (SSTP-E), standard parent training intervention alone (SSTP-S) or waitlist control (WL) condition. At post-intervention, both programs were associated with lower levels of observed negative child behavior, reductions in the number of care-giving settings where children displayed problem behavior, and improved parental competence and satisfaction in the parenting role as compared with the waitlist condition. Gains attained at post-intervention were maintained at 1-year follow-up. Both interventions produced significant reductions in child problem behavior, with 67% of children in the SSTP-E and 77% of children in the SSTPS showing clinically reliable change from pre-intervention to follow-up. Parents reported a high level of satisfaction with both interventions.
Resumo:
The study investigated the behaviors and interactions of children in structured and unstructured groups as they worked together on a 6-week social studies activity each term for 3 school terms. Two hundred and twelve children in Grade 1 and 184 children in Grade 3 participated in the study. Stratified random assignment occurred so that each gender-balanced group consisted of 1 high-, 2 medium-, and 1 low-ability student. The results show that the children in the structured groups were consistently more cooperative and they provided more elaborated and nonelaborated help than did their peers in the unstructured groups. The children in the structured groups in Grade 3 obtained higher reading and learning outcome scores than their peers in the unstructured groups.