29 resultados para reversible regeneration
em University of Queensland eSpace - Australia
Resumo:
The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.
Etr1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation
Resumo:
We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.
Resumo:
The functional integrity of the immune system is essential for peripheral antinociception. Previous studies have demonstrated that immune cells elicit potent antinociception in inflamed tissues and that corticotropin-releasing factor-induced antinociception is significantly inhibited in animals that have undergone cyclosporin A (CsA)-induced immunosuppression. In this study, we examined the effect of a single bolus of CsA on inflammatory nociception. CsA-treated rats had substantially increased nociception compared with nonimmunosuppressed rats, consistent with a reduction in circulating and infiltrating lymphocytes. Furthermore, CsA-treated rats had inhibition of corticotropin-releasing factor-induced immune-derived antinociception, which was dose-dependently reversed by IV injection of concanavalin A-activated donor lymphocytes (1.0-7.0 X 10(6) cells/0.1 mL). In conclusion, our findings provided further evidence that opioid-containing immune cells are essential for peripheral analgesia. It is evident from these findings that control of inflammatory pain relies heavily on a functioning immune system.
Resumo:
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cav(DGV)) to study LB formation and to examine its effect on LB function. We now show that the cav(DGV) mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.
Resumo:
The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.
Resumo:
Spinal cord injury usually results in permanent paralysis because of lack of regrowth of damaged neurons. Here we demonstrate that adult mice lacking EphA4 (-/-), a molecule essential for correct guidance of spinal cord axons during development, exhibit axonal regeneration and functional recovery after spinal cord hemisection. Anterograde and retrograde tracing showed that axons from multiple pathways, including corticospinal and rubrospinal tracts, crossed the lesion site. EphA4 -/- mice recovered stride length, the ability to walk on and climb a grid, and the ability to grasp with the affected hindpaw within 1-3 months of injury. EphA4 expression was upregulated on astrocytes at the lesion site in wild-type mice, whereas astrocytic gliosis and the glial scar were greatly reduced in lesioned EphA4-/- spinal cords. EphA4 -/- astrocytes failed to respond to the inflammatory cytokines, interferon-gamma or leukemia inhibitory factor, in vitro. Neurons grown on wild-type astrocytes extended shorter neurites than on EphA4 -/- astrocytes, but longer neurites when the astrocyte EphA4 was blocked by monomeric EphrinA5-Fc. Thus, EphA4 regulates two important features of spinal cord injury, axonal inhibition, and astrocytic gliosis.
Resumo:
The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.
Resumo:
Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A significant proportion of the human population suffers from some form of skin disorder, whether it be from burn injury or inherited skin anomalies. The ideal treatment for skin disorders would be to regrow skin tissue from stem cells residing in the individual patient's skin. Locating these adult stem cells and elucidating the molecules involved in orchestrating the production of new skin cells are important steps in devising more-efficient methods of skin production and wound healing via the ex vivo expansion of patient keratinocytes in culture. This review focuses on the structure of the skin, the identification of skin stem cells, and the role of Notch, Wnt and Hedgehog signalling cascades in regulating the fate of epidermal stem cells. © 2005 Cambridge University Press.
Resumo:
Liver regeneration is an orchestrated cellular response that coordinates cell activation, lipid metabolism, and cell division. We found that caveolin-1 gene - disrupted mice (cav1(-/-) mice) exhibited impaired liver regeneration and low survival after a partial hepatectomy. Hepatocytes showed dramatically reduced lipid droplet accumulation and did not advance through the cell division cycle. Treatment of cav1(-/-) mice with glucose ( which is a predominant energy substrate when compared to lipids) drastically increased survival and reestablished progression of the cell cycle. Thus, caveolin-1 plays a crucial role in the mechanisms that coordinate lipid metabolism with the proliferative response occurring in the liver after cellular injury.
Resumo:
Visualisation of multiple isoforms of kappa-casein on 2-D gels is restricted by the abundant alpha- and beta-caseins that not only limit gel loading but also migrate to similar regions as the more acidic kappa-casein isoforms. To overcome this problem, we took advantage of the absence of cysteine residues in alpha(S1)- and beta-casein by devising an affinity enrichment procedure based on reversible biotinylation of cysteine residues. Affinity capture of cysteine-containing proteins on avidin allowed the removal of the vast majority of alpha(S1)- and beta-casein, and on subsequent 2-D gel analysis 16 gel spots were identified as kappa-casein by PMF. Further analysis of the C-terminal tryptic peptide along with structural predictions based on mobility on the 2-D gel allowed us to assign identities to each spot in terms of genetic variant (A or B), phosphorylation status (1, 2 or 3) and glycosylation status (from 0 to 6). Eight isoforms of the A and B variants with the same PTMs were observed. When the casein fraction of milk from a single cow, homozygous for the B variant of kappa-casein, was used as the starting material, 17 isoforms from 13 gel spots were characterised. Analysis of isoforms of low abundance proved challenging due to the low amount of material that could be extracted from the gels as well as the lability of the PTMs during MS analysis. However, we were able to identify a previously unrecognised site, T-166, that could be phosphorylated or glycosylated. Despite many decades of analysis of milk proteins, the reasons for this high level of heterogeneity are still not clear.
Resumo:
Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally.