13 resultados para real world context
em University of Queensland eSpace - Australia
Resumo:
The present study evaluated the impact of a universal prevention of depression program [the Resourceful Adolescent Program (RAP)] when implemented under real-world conditions in a school setting. Prior research has found the RAP program to be beneficial for high-school students when the program was implemented by university staff selected, trained, and supervised by a research team. The present study evaluated the RAP program when implemented by existing school personnel. Separately, we measured the impact of a training program for facilitators, the quality of subsequent program implementation, and the student's response to the RAP Program. Results showed that, in response to the training program, facilitators believed they had acquired the knowledge and confidence to implement the program and that the quality of program implementation was acceptable. The study did not demonstrate a beneficial impact of the RAP program for the students. The results raise important questions regarding the extent of training and ongoing supervision facilitators require if the beneficial outcomes for students are to be maintained when interventions are implemented under real-world conditions in school settings. (C) 2004 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous research indicates that people who are highly identified with their groups tend to remain committed to them under threat. This study examines the generalizability, of this effect to (a) a real-life context involving the perception that others view the ingroup (Australians) as intolerant of minorities and (b) various dimensions of social identification. The sample comprised 213 respondents to a random mail survey. Perceived threat was inversely related to self-stereotyping (i.e. perceptions of self-ingroup similarity), but only for individuals with weak subjective ties to other group members. Threat perceptions were also predictive of enhanced judgments of within-group variability on threat-relevant dimensions, particularly for individuals with weaker ingroup ties. Various strategies for coping with a threatened social identity are linked to different facets of social identification.
Resumo:
This paper describes an application of decoupled probabilistic world modeling to achieve team planning. The research is based on the principle that tbe action selection mechanism of a member in a robot team cm select am effective action if a global world model is available to all team members. In the real world, the sensors are imprecise, and are individual to each robot, hence providing each robot a partial and unique view about the environment. We address this problem by creating a probabilistic global view on each agent by combining the perceptual information from each robot. This probsbilistie view forms the basis for selecting actions to achieve the team goal in a dynamic environment. Experiments have been carried ont to investigate the effectiveness of this principle using custom-built robots for real world performance, in addition, to extensive simulation results. The results show an improvement in team effectiveness when using probabilistic world modeling based on perception sharing for team planning.
Resumo:
This paper reports on a current research project in which virtual reality simulators are being investigated as a means of simulating hazardous Rail work conditions in order to allow train drivers to practice decision-making under stress. When working under high stress conditions train drivers need to move beyond procedural responses into a response activated through their own problem-solving and decision-making skills. This study focuses on the use of stress inoculation training which aims to build driver’s confidence in the use of new decision-making skills by being repeatedly required to respond to hazardous driving conditions. In particular, the study makes use of a train cab driving simulator to reproduce potentially stress inducing real-world scenarios. Initial pilot research has been undertaken in which drivers have experienced the training simulation and subsequently completed surveys on the level of immersion experienced. Concurrently drivers have also participated in a velocity perception experiment designed to objectively measure the fidelity of the virtual training environment. Baseline data, against which decision-making skills post training will be measured, is being gathered via cognitive task analysis designed to identify primary decision requirements for specific rail events. While considerable efforts have been invested in improving Virtual Reality technology, little is known about how to best use this technology for training personnel to respond to workplace conditions in the Rail Industry. To enable the best use of simulators for training in the Rail context the project aims to identify those factors within virtual reality that support required learning outcomes and use this information to design training simulations that reliably and safely train staff in required workplace accident response skills.
Resumo:
This paper challenges current practices in the use of digital media to communicate Australian Aboriginal knowledge practices in a learning context. It proposes that any digital representation of Aboriginal knowledge practices needs to examine the epistemology and ontology of these practices in order to design digital environments that effectively support and enable existing Aboriginal knowledge practices in the real world. Central to this is the essential task of any new digital representation of Aboriginal knowledge to resolve the conflict between database and narrative views of knowledge (L. Manovich, 2001). This is in order to provide a tool that complements rather than supplants direct experience of traditional knowledge practices (V. Hart, 2001). This paper concludes by reporting on the recent development of an advanced learning technology that addresses this.
Resumo:
The real-time refinement calculus is an extension of the standard refinement calculus in which programs are developed from a precondition plus post-condition style of specification. In addition to adapting standard refinement rules to be valid in the real-time context, specific rules are required for the timing constructs such as delays and deadlines. Because many real-time programs may be nonterminating, a further extension is to allow nonterminating repetitions. A real-time specification constrains not only what values should be output, but when they should be output. Hence for a program to implement such a specification, it must guarantee to output values by the specified times. With standard programming languages such guarantees cannot be made without taking into account the timing characteristics of the implementation of the program on a particular machine. To avoid having to consider such details during the refinement process, we have extended our real-time programming language with a deadline command. The deadline command takes no time to execute and always guarantees to meet the specified time; if the deadline has already passed the deadline command is infeasible (miraculous in Dijkstra's terminology). When such a realtime program is compiled for a particular machine, one needs to ensure that all execution paths leading to a deadline are guaranteed to reach it by the specified time. We consider this checking as part of an extended compilation phase. The addition of the deadline command restores for the real-time language the advantage of machine independence enjoyed by non-real-time programming languages.