111 resultados para powder properties
em University of Queensland eSpace - Australia
Resumo:
Granule impact deformation has long been recognised as important in determining whether or not two colliding granules will coalesce. Work in the last 10 years has highlighted the fact that viscous effects are significant in granulation. The relative strengths of different formulations can vary with strain rate. Therefore, traditional strength measurements made at pseudo-static conditions give no indication, even qualitatively, of how materials will behave at high strain rates, and hence are actually misleading when used to model granule coalescence. This means that new standard methods need to be developed for determining the strain rates encountered by granules inside industrial equipment and also for measuring the mechanical properties of granules at these strain rates. The constitutive equations used in theoretical models of granule coalescence also need to be extended to include strain-rate dependent components.
Resumo:
The mechanical properties of a typical sintered aluminium alloy (Al-4.4Cu-0.8Si-0.5Mg) have been improved by the simultaneous use of trace additions of Sn, high sintering temperatures and modified heat treatments. Tin increases densification, but the Sn concentration is limited to less than or equal to 0.1wt% because incipient melting occurs during solution treatment at higher Sn levels. A sintering temperature of 620 degrees C increases the liquid volume over that formed at the conventional 590 degrees C sintering temperature. However, the higher sintering temperature results in the formation of an embrittling phase which can be eliminated if solution treatment is incorporated into the sintering cycle (a modified TS heat treatment). These conditions produce a tensile strength of 375 MPa, an increase of nearly 20% over the unmodified alloy. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Freeform fabrication methods allow the direct formation of parts built layer by layer, under the control of a CAD drawing. Most of these methods form parts in thermoplastic or thermoset polymers, but there would be many applications for freeform fabrication of fully functional metal or ceramic parts. We describe here the freeforming of sinterable aluminium alloys. In addition, the building approach allows different materials to be positioned within a monolithic part for an optimal combination of properties. This is illustrated here with the formation of an aluminium gear with a metal-matrix composite wear surface. (C) 1999 Kluwer Academic Publishers.
Resumo:
The forging characteristics of an Al-Cu-Mg-Si-Sn alloy are examined using it new testing strategy which incorporates a double truncated cone specimen and finite element modelling. This sample geometry produces controlled strain distributions within a single specimen and can readily identify the specific strain required to achieve a specific microstructural event by matching the metallographic data with the strain profiles calculated from finite element software, The friction conditions were determined using the conventional friction ring test, which was evaluated using finite element software. The rheological properties of the alloy, evaluated from compression testing of right cylinders, are similar to the properties of conventional aluminium forgings. A hoop strain develops at the outer diameter of the truncated cones and this leads to pore opening at the outer few millimetres. The porosity is effectively removed when the total strain equals the net compressive strain. The strain profiles that develop in the truncated cones are largely independent of the processing temperature and the strain rate although the strain required for pore closure increases as the forging temperature is reduced. This suggests that the microstructure and the strain rate sensitivity may also be important factors controlling pore behaviour. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of the present study was to prepare solid Quil A-cholesterol-phospholid formulations (as powder mixtures or compressed to pellets) by physical mixing or by freeze-drying of aqueous dispersions of these components in ratios that allow spontaneous formation of ISCOMs and other colloidal stuctures upon hydration. The effect of addition of excess cholesterol to the lipid mixtures on the release of a model antigen (PE-FITC-OVA) from the pellets was also investigated. Physical properties were evaluated by X-ray powder diffractometry (XPRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and polarized light microscopy (PLM). Characterization of aqueous colloidal dispersions was performed by negative staining transmission electron microscopy (TEM). Physically mixed powders (with or without PE-FITC-OVA) and pellets prepared from the same powders did not spontaneously form ISCOM matrices and related colloidal structures such as worm-like micelles, ring-like micelles, lipidic/layered structures and lamellae (hexagonal array of ring-like micelles) upon hydration as expected from the pseudo-temary diagram for aqueous mixtures of Quil A, cholesterol and phospholipid. In contrast, spontaneous formation of the expected colloids was demonstrated for the freeze-dried lipid mixtures. Pellets prepared by compression of freeze-dried powders released PE-FITC-OVA slower than those prepared from physically mixed powders. TEM investigations revealed that the antigen was released in the form of colloidal particles (ISCOMs) from pellets prepared by compression of freeze-dried powders. The addition of excess cholesterol slowed down the release of antigen. The findings obtained in this study are important for the formulation of solid Quil A-containing lipid articles as controlled particulate adjuvant containing antigen delivery systems. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Single-phase Ba(Cd1/3Ta2/3)O-3 powder was produced using conventional solid state reaction methods. Ba(Cd1/3Ta2/3)O-3 ceramics with 2 wt % ZnO as sintering additive sintered at 1550 degreesC exhibited a dielectric constant of similar to32 and loss tangent of 5x10(-5) at 2 GHz. X-ray diffraction and thermogravimetric measurements were used to characterize the structural and thermodynamic properties of the material. Ab initio electronic structure calculations were used to give insight into the unusual properties of Ba(Cd1/3Ta2/3)O-3, as well as a similar and more widely used material Ba(Zn1/3Ta2/3)O-3. While both compounds have a hexagonal Bravais lattice, the P321 space group of Ba(Cd1/3Ta2/3)O-3 is reduced from P (3) under bar m1 of Ba(Zn1/3Ta2/3)O-3 as a result of a distortion of oxygen away from the symmetric position between the Ta and Cd ions. Both of the compounds have a conduction band minimum and valence band maximum composed of mostly weakly itinerant Ta 5d and Zn 3d/Cd 4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and is suggested to play an important role in producing materials with a high dielectric constant and low microwave loss. (C) 2005 American Institute of Physics.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Resumo:
The study of the mechanisms of mechanical alloying requires knowledge of the impact characteristics between the ball and vial in the presence of milling powders. In this paper, foe falling experiments have br cn used to investigate the characteristics of impact events involved in mechanical milling. The effects of milling conditions, including impact velocity, ball size and powder thickness. on the coefficient of restitution and impact force are studied. It is found that the powder has a significant influence on the impact process due to its porous structure. This effect can be demonstrated using a modified Kelvin model. This study also confirms that the impact force is a relevant parameter for characterising the impact event due to its sensitivity to the milling conditions. (C) 1998 Elsevier Science S.A.
Resumo:
The molecular mechanism of how insects recognize intruding microorganisms and parasites and distinguish them from own body structures is not well known. We explored evolutionary adaptations in an insect parasitoid host interaction to identify components that interfere with the recognition of foreign objects and cellular encapsulation. Because some parasitoids provide protection for the developing wasp in the absence of an overt suppression of the insect host defense, we analyzed the surface of eggs and symbiotic viruses for protective properties. Here we report on the molecular cloning of a 32-kDa protein (Crp32) that is one of the major protective components. It is produced in the calyx cells of the female wasp ovaries and attached to the surface of the egg and other particles including polydnaviruses. The recombinant protein confers protection to coated objects in a cellular encapsulation assay suggesting that a layer of Crp32 may prevent cellular encapsulation reactions by a local inactivation of the host defense system.
Resumo:
The aim of this work is to develop 3-acyl prodrugs of the potent analgesic morphine-6-sulfate (M6S). These are expected to have higher potency and/or exhibit longer duration of analgesic action than the parent compound. M6S and the prodrugs were synthesized, then purified either by recrystallization or by semi-preparative HPLC and the structures confirmed by mass spectrometry, IR spectrophotometry and by detailed 1- and 2-D NMR studies. The lipophilicities of the compounds were assessed by a combination of shake-flask, group contribution and HPLC retention methods. The octanol-buffer partition coefficient could only be obtained directly for 3-heptanoylmorphine-6-sulfate, using the shake-flask method. The partition coefficients (P) for the remaining prodrugs were estimated from known methylene group contributions. A good linear relationship between log P and the HPLC log capacity factors was demonstrated. Hydrolysis of the 3-acetyl prodrug, as a representative of the group, was found to occur relatively slowly in buffers (pH range 6.15-8.01), with a small buffer catalysis contribution. The rates of enzymatic hydrolysis of the 3-acyl group in 10% rat blood and in 10% rat brain homogenate were investigated. The prodrugs followed apparent first order hydrolysis kinetics, with a significantly faster hydrolysis rate found in 10% rat brain homogenate than in 10% rat blood for all compounds. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Activated carbon as catalyst support was treated with HCl, HNO3, and HF and the effects of acid treatments on the properties of the activated carbon support were studied by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). Ni catalysts supported on untreated and treated activated carbons were prepared, characterized and tested for the reforming reaction of methane with carbon dioxide. It is found that acid treatment significantly changed the surface chemical properties and pore structure of the activated carbon. The surface area and pore volume of the carbon supports are generally enhanced upon acid treatment due to the removal of impurities present in the carbon. The adsorption capacity of Ni2+ on the carbon supports is also increased, and the increase can be closely correlated with the surface acidity. The impregnation of nickel salts decreases the surface area and pore volume of carbon supports both in micropores and mesopores. Acid treatment results in a more homogeneous distribution of the nickel salt in carbon. When the impregnated carbons are heated in inert atmosphere, there exists a redox reaction between nickel oxide and the carbon. Catalytic activity tests for methane reforming with carbon dioxide show that the activity of nickel catalysts based on the acid-treated carbon supports is closely related with the surface characteristics of catalysts. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BE model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations. (C) 1998 Optical Society of America.
Resumo:
Naturally occurring clays and pillared clays are used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of the supports and catalysts are systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD) techniques. It is found that the pore structures and surface properties of supports greatly affect the catalytic activities of the catalysts prepared. The catalysts supported on the mesoporous clays or pillared clays are obviously superior to those on microporous supports because the mesoporous supports are highly thermal stable compared to the microporous ones. It is found that introducing lanthanum to the supports can improve the catalyst basicity and thus enhance the catalytic activities of these catalysts. Deactivation of catalysts prepared and factors influencing their stability are also discussed. (C) 1998 Academic Press.