12 resultados para peak minimization (PM)

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine if a hypertensive response to exercise (HRE) is associated with myocardial changes consistent with early hypertensive heart disease. BACKGROUND An HRE predicts the development of chronic hypertension (HT) and may reflect a preclinical stage of HT. METHODS Patients with a normal left ventricular (LV) ejection fraction and a negative stress test were recruited into three matched groups: 41 patients (age 56 +/- 10 years) with HRE (210/105 mm Hg in men; > 190/105 in women), comprising 22 patients with (HT+) and 19 without resting hypertension (HT-); and 17 matched control subjects without HRE. Long-axis function was determined by measurement of the strain rate (SR), peak systolic strain, and cyclic variation (CV) of integrated backscatter in three apical views. RESULTS An HRE was not associated with significant differences in LV mass index. Exercise performance and diastolic function were reduced in HRE(HT+) patients, but similar in HRE(HT-) patients and controls. Systolic dysfunction (peak systolic strain, SR, and CV) was significantly reduced in HRE patients (p < 0.001 for all). These reductions were equally apparent in patients with and without a history of resting HT (p = NS) and were independent of LV mass index and blood pressure (p < 0.01). CONCLUSIONS An HRE is associated with subtle systolic dysfunction, even in the absence of resting HT. These changes occur before the development of LV hypertrophy or detectable diastolic dysfunction and likely represent early hypertensive heart disease. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Previous work suggesting a better correlation of diastolic than systolic function with exercise capacity in heart failure may reflect the -relative insensitivity and load-dependence of ejection fraction (EF). We sought the correlation of new and more sensitive methods of quantifying systolic and diastolic function and filling pressure with functional capacity. Methods We studied 155 consecutive exercise tests on 95 patients with congestive heart failure (81 male, aged 62 +/- 10 years), who underwent resting 2-climensional echocardiography and tissue Doppler imaging before and after measurement of maximum oxygen uptake (peak VO2)Results The resting EF was 3 1 % 10% and a peak VO(2)was 13 +/- 5 mL/kg/min; the majority of these patients (80%) had an ischemic cardiornyopathy. Resting EF (r 0.14, P =.09) correlated poorly with peak VO2 and mean systolic (r = 0.23, P =.004) and diastolic tissue velocities (r 0.18, P =.02). Peak EF was weakly correlated with the mean systolic (r = 0.18, P =.02) and diastolic velocities (r = 0.16, P <.04). The mean sum of systolic and diastolic velocities in both annuli (r = 0.30, P <.001) and E/Ea ratio (r 0.31, P <.001) were better correlated with peak VO2 Prediction of peak VO2 was similar with models based on models of filling pressure (R = 0.61), systolic factors (R = 0.63), and diastolic factors (R 0.59), although a composite model of filling pressure, systolic and diastolic function was a superior predictor of peak VO2 (R 0.69; all P<.001). Conclusions The reported association of diastolic rather than systolic function with functional capacity may have reflected the limitations of EF. Functional capacity appears related not only to diastolic function, but also to systolic function and filling pressure, and is most closely associated with a combination of these factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Including positive end-expiratory pressure (PEEP) in the manual resuscitation bag (MRB) may render manual hyperinflation (MHI) ineffective as a secretion maneuver technique in mechanically ventilated patients. In this study we aimed to determine the effect of increased PEEP or decreased compliance on peak expiratory flow rate (PEF) during MHI. A blinded, randomized study was performed on a lung simulator by 10 physiotherapists experienced in MHI and intensive care practice. PEEP levels of 0-15 cm H2O, compliance levels of 0.05 and 0.02 L/cm H2O, and MRB type were randomized. The Mapleson-C MRB generated significantly higher PEF (P < 0.01, d = 2.72) when compared with the Laerdal MRB for all levels of PEEP. In normal compliance (0.05 L/cm H2O) there was a significant decrease in PEF (P < 0.01, d = 1.45) for a PEEP more than 10 cm H2O in the Mapleson-C circuit. The Laerdal MRB at PEEP levels of more than 10 cm H2O did not generate a PEF that is theoretically capable of producing two-phase gas-liquid flow and, consequently, mobilizing pulmonary secretions. If MHI is indicated as a result of mucous plugging, the Mapleson-C MRB may be the most effective method of secretion mobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. Introduction: The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Materials and Methods: Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). Results: BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. Conclusions: There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in part, by a draw on cortical bone to meet the mineral demands of the expanding skeleton resulting in a temporary increased fracture risk.