19 resultados para ordinary differential equation (ODE)
em University of Queensland eSpace - Australia
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless failed to apply that knowledge when needed. In addition, few students were able to determine the units of a proportionality factor in a simple equation. These results indicate that lecturers of modelling courses cannot take this foundational knowledge for granted and should explicitly include it in instruction.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.
Resumo:
This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the Majoritarian Parliamentary System, the government has a constitutional right to call an early election. This right provides the government a control to achieve its objective to remain in power for as long as possible. We model the early election problem mathematically using opinion polls data as a stochastic process to proxy the government's probability of re-election. These data measure the difference in popularity between the government and the opposition. We fit a mean reverting Stochastic Differential Equation to describe the behaviour of the process and consider the possibility for the government to use other control tools, which are termed 'boosts' to induce shocks to the opinion polls by making timely policy announcements or economic actions. These actions improve the government's popularity and have some impact upon the early-election exercise boundary. © Austral. Mathematical Soc. 2005.
Resumo:
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.
Resumo:
In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.
Resumo:
The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.