41 resultados para model predictive control approach
em University of Queensland eSpace - Australia
Resumo:
In this paper an approach to extreme event control in wastewater treatment plant operation by use of automatic supervisory control is discussed. The framework presented is based on the fact that different operational conditions manifest themselves as clusters in a multivariate measurement space. These clusters are identified and linked to specific and corresponding events by use of principal component analysis and fuzzy c-means clustering. A reduced system model is assigned to each type of extreme event and used to calculate appropriate local controller set points. In earlier work we have shown that this approach is applicable to wastewater treatment control using look-up tables to determine current set points. In this work we focus on the automatic determination of appropriate set points by use of steady state and dynamic predictions. The performance of a relatively simple steady-state supervisory controller is compared with that of a model predictive supervisory controller. Also, a look-up table approach is included in the comparison, as it provides a simple and robust alternative to the steady-state and model predictive controllers, The methodology is illustrated in a simulation study.
Resumo:
We apply a three-dimensional approach to describe a new parametrization of the L-operators for the two-dimensional Bazhanov-Stroganov (BS) integrable spin model related to the chiral Potts model. This parametrization is based on the solution of the associated classical discrete integrable system. Using a three-dimensional vertex satisfying a modified tetrahedron equation, we construct an operator which generalizes the BS quantum intertwining matrix S. This operator describes the isospectral deformations of the integrable BS model.
Resumo:
In this paper, a new control design method is proposed for stable processes which can be described using Hammerstein-Wiener models. The internal model control (IMC) framework is extended to accommodate multiple IMC controllers, one for each subsystem. The concept of passive systems is used to construct the IMC controllers which approximate the inverses of the subsystems to achieve dynamic control performance. The Passivity Theorem is used to ensure the closed-loop stability. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Many granulation plants operate well below design capacity, suffering from high recycle rates and even periodic instabilities. This behaviour cannot be fully predicted using the present models. The main objective of the paper is to provide an overview of the current status of model development for granulation processes and suggest future directions for research and development. The end-use of the models is focused on the optimal design and control of granulation plants using the improved predictions of process dynamics. The development of novel models involving mechanistically based structural switching methods is proposed in the paper. A number of guidelines are proposed for the selection of control relevant model structures. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Aims The aims of this study are to develop and validate a measure to screen for a range of gambling-related cognitions (GRC) in gamblers. Design and participants A total of 968 volunteers were recruited from a community-based population. They were divided randomly into two groups. Principal axis factoring with varimax rotation was performed on group one and confirmatory factor analysis (CFA) was used on group two to confirm the best-fitted solution. Measurements The Gambling Related Cognition Scale (GRCS) was developed for this study and the South Oaks Gambling Screen (SOGS), the Motivation Towards Gambling Scale (MTGS) and the Depression Anxiety Stress Scale (DASS-2 1) were used for validation. Findings Exploratory factor analysis performed using half the sample indicated five factors, which included interpretative control/bias (GRCS-IB), illusion of control (GRCS-IC), predictive control (GRCS-PC), gambling-related expectancies (GRCS-GE) and a perceived inability to stop gambling (GRCS-IS). These accounted for 70% of the total variance. Using the other half of the sample, CFA confirmed that the five-factor solution fitted the data most effectively. Cronbach's alpha coefficients for the factors ranged from 0.77 to 0.91, and 0.93 for the overall scale. Conclusions This paper demonstrated that the 23-item GRCS has good psychometric properties and thus is a useful instrument for identifying GRC among non-clinical gamblers. It provides the first step towards devising/adapting similar tools for problem gamblers as well as developing more specialized instruments to assess particular domains of GRC.
Resumo:
The Appetitive Motivation Scale (Jackson & Smillie, 2004) is a new trait conceptualisation of Gray's (I 970 199 1) Behavioural Activation System. In this experiment we explore relationships that the Appetitive Motivation Scale and other measures of Gray's model have with Approach and Active Avoidance responses. Using a sample of 144 undergraduate students, both Appetitive Motivation and Sensitivity to Reward (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, SPSRQ; Torrubia, Avila, Molto, & Ceseras, 2001), were found to be significant predictors of Approach and Active Avoidance response latency. This confirms previous experimental validations of the SPSRQ (e.g., Avila, 2001) and provides the first experimental evidence for the validity of the Appetitive Motivation scale. Consistent with interactive views of Gray's model (e.g., Corr, 2001), high SPSRQ Sensitivity to Punishment diminished the relationship between Sensitivity to Reward and our BAS criteria. Measures of BIS did not however interact in this way with the appetitive motivation scale. A surprising result was the failure for any of Carver and White's (1994) BAS scales to correlate with RST criteria. Implications of these findings and potential future directions are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The microstructural variation of Norit RI Extra activated carbon, progressively heated at 1373 K, was explored in terms of pore size and pore wall thickness distributions, for various periods of heating time, determined by argon adsorption at 87 K, both using an infinite as well as and finite wall thickness model. The latter approach has recently been developed in our laboratory and has been applied to several virgin carbons. The current results show significant variations in small pore size regions (< 7 angstrom) in association with strong growth of thick walls having at least three carbon sheets, as a result of heat treatment. In particular, shrinkage of the smallest pores due to strong interaction between their opposite walls as well as smoothening of carbon wall surfaces due to an increase in graphitization degree under thermal treatment have been found. Further, the results of pore wall thickness distribution are well corroborated by X-ray diffraction. The results of pore size and pore wall thickness distributions are also shown to be consistent with transmission electron microscopy analyses. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a Solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The cost of uniqueness is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, ill turn, can lead to erroneous predictions made by a model that is ostensibly well calibrated. Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as all inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based oil pilot points, and calibration is Implemented using both zones of piecewise constancy and constrained minimization regularization. (C) 2005 Elsevier Ltd. All rights reserved.