8 resultados para mine water

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe the diversity of aquatic invertebrates colonising water-filled final voids produced by an open-cut coal mine near Moura, central Queensland. Ten disused pits that had been filled with water from < 1 year to 22 years prior to the survey and three nearby 'natural' water bodies were sampled in December 1998 and again in March 1999. All invertebrates collected were identified to family with the exception of oligochaetes, cladocerans, ostracods and copepods, which were identified to these coarser taxonomic levels. Sixty-two taxa were recorded from > 20 000 individuals. The greatest familial richness was displayed by the Insecta (33 families) followed by the mites (Acari) with 12 families. While natural water bodies held the greatest diversity, several mine pits were almost as rich in families. Classification analyses showed that natural sites tended to cluster together, but the groupings did not clearly exclude pit sites. Mining pits that supported higher diversity tended to be older and had lower salinity (< 2000 mu S/cm); however, salinity in all water bodies varied with rainfall conditions. We conclude that ponds formed in final voids at this mine have the potential to provide habitat for many invertebrate taxa typical of lentic inland water bodies in central Queensland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suction profile of a desiccating soil is dependent on the water table depth, the soil-water retention characteristics, and the climatic conditions. In this paper, an unsaturated flow model, which simulates both liquid and vapour flow, was used to investigate the effects of varying the water table depth and the evaporation rate on the evaporative fluxes from a desiccating tailings deposit under steady-state conditions. Results obtained showed that at a critical evaporation rate, beyond which evaporation is no longer dictated by climatic conditions, the matric suction profiles remain basically unchanged. The critical evaporation rate varies inversely with the water table depth. It is associated with the maximum evaporative flux that might be extracted from a soil at steady-state conditions. The time required to establish steady-state conditions is directly proportional to the water table depth, and it acquires a maximum value at the critical evaporation rate. A detailed investigation of the movement of the drying front demonstrated the significance of attaining a matric suction of about 3000 kPa on the contribution to flow in the vapour phase.