34 resultados para metabolic substrates
em University of Queensland eSpace - Australia
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
Drugs known to inhibit the metabolism of cyclosporine are administered concomitantly to those who undergo cardiothoracic transplantation. The aim of this study was to examine in quantitative terms the relationship between cyclosporine oral dose rate and the trough concentration (Css(trough)) at steady state in patients who undergo cardiothoracic transplantation and are administered cyclosporine alone or in combination with drugs known to inhibit its metabolism. Dose and whole blood cyclosporine Css(tough) observations measured using the enzyme-multiplied immunoassay technique (EMIT) (396 observations) or the TDx assay (435 observations) were collected as part of routine blood concentration monitoring from 182 patients who underwent cardiothoracic transplantation. Data were analyzed using a linear mixed-effects modeling approach to examine the effect of metabolic inhibitors on dose-rate-Css(trough) ratio. The mean (and 95% confidence interval) dose-rate-Css(trough) ratio for cyclosporine generated from concentrations measured using EMIT was 94 (82.5-105.5) Lh(-1) for patients administered cyclosporine alone, 66.7 (58.1-75.3) Lh(-1) for patients administered concomitant diltiazem, 47.9 (15.4 -80.4) Lh(-1) for patients administered concomitant itraconazole, 21.7 (14.8-28.5) Lh(-1) for patients administered concomitant ketoconazole, and 14.9 (11.8-18.1) Lh(-1) for patients concomitantly administered diltiazem and ketoconazole. For patients administered concomitant cyclosporine, ketoconazole, and diltiazem, the dosage of cyclosporine, if it is administered alone, should be 20% to achieve the same blood concentrations. This will allow safer drug concentration targeting of cyclosporine after cardiothoracic transplantation.
Resumo:
Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYL107 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.
Resumo:
Arylamine N-acetyltransferase-1 (NAT1) is a polymorphically expressed enzyme that is widely distributed throughout the body. In the present study, we provide evidence for substrate-dependent regulation of this enzyme. Human peripheral blood mononuclear cells cultured in medium supplemented with p-aminobenzoic acid (PABA; 6 mu M) for 24 h showed a significant decrease (50-80%) in NAT1 activity. The loss of activity was concentration-dependent (EC50 similar to 2 mu M) and selective because PABA had no effect on the activity of constitutively expressed lactate dehydrogenase or aspartate aminotransferase. PABA also induced down-regulation of NAT1 activity in several human cell lines grown at confluence. Substrate-dependent downregulation was not restricted to PABA. Addition of other NAT1 substrates, such as p-aminosalicylic acid, ethyl-p-aminobenzoate, or p-aminophenol to peripheral blood mononuclear cells in culture also resulted in significant (P < .05) decreases in NAT1 activity. However, addition of the NAT2-selective substrates sulfamethazine, dapsone, or procainamide did not alter NAT1 activity. Western blot analysis using a NAT1-specific antibody showed that the loss of NAT1 activity was associated with a parallel reduction in the amount of NAT1 protein (r(2) = 0.95). Arylamines that did not decrease NAT1 activity did not alter NAT1 protein levels. Semiquantitative reverse transcriptase polymerase chain reaction of mRNA isolated from treated and untreated cells revealed no effect of PABA on NAT1 mRNA levels. We conclude that NAT1 can be down-regulated by arylamines that are themselves NAT1 substrates. Because NAT1 is involved in the detoxification/activation of various drugs and carcinogens, substrate-dependent regulation may have important consequences with regard to drug toxicity and cancer risk.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli
Resumo:
A quantitatively repeatable protocol was developed for poly(3-hydroxybutyrate) (PHB) production by Escherichia coli XL1-Blue (pSYL107). Two constant-glucose fed-batch fermentations of duration 25 h were carried out in a 5-L bioreactor, with the measured oxygen volumetric mass-transfer coefficient (k(L)a) held constant at 1.1 min(-1). All major consumption and production rates were quantified. The intracellular concentration profiles of acetyl-CoA (300 to 600 mug.g RCM-1) and 3-hydroxy-butyryl-CoA (20 to 40 mug.g RCM-1) were measured, which is the first time this has been performed for E. coli during PHB production. The kinetics of PHB production were examined and likely ranges were established for polyhydroxyalkanoate (PHA) enzyme activity and the concentration of pathway metabolites. These measured and estimated values are quite similar to the available literature estimates for the native PHB producer Ralstonia eutropha. Metabolic control analysis performed on the PHB metabolic pathway showed that the PHB flux was highly sensitive to acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concentration (response coefficient 0.7), and pH (response coefficient -1.25). It was less sensitive (response coefficient 0.25) to NADPH/NADP ratio. NADP(H) concentration (NADPH + NADP) had a negligible effect. No single enzyme had a dominant flux control coefficient under the experimental conditions examined (0.6, 0.25, and 0.15 for 3-ketoacyl-CoA reductase, PHA synthase, and 3-ketothiolase, respectively). In conjunction with metabolic flux analysis, kinetic analysis was used to provide a metabolic explanation for the observed fermentation profile. In particular, the rapid onset of PHB production was shown to be caused by oxygen limitation, which initiated a cascade of secondary metabolic events, including cessation of TCA cycle flux and an increase in acetyl-CoA/CoA ratio. (C) 2001 John Wiley & Sons. Inc. Biotechnol Bioeng 74: 70-80, 2001.
Resumo:
Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining was carried out to investigate microfracture, residual damage, and surface roughness associated with material removal and surface generation. Brittle versus plastic deformation was studied using Vickers indention and nano-indentation. To characterize the abrasive machining response, the 6H-SiC (0001) substrates were ground using diamond wheels with grit sizes of 25, 15 and 7 mum, and then polished with diamond suspensions of 3 and 0.05 mum. It is found that in indentation, there was a scale effect for brittle versus plastic deformation in 6H-SiC substrates. Also, in grinding, the scales of fracture and surface roughness of the substrates decreased with a decrease in diamond grit size. However, in polishing, a reduction in grit size of diamond suspensions gave no significant improvement in surface roughness. Furthermore, the results showed that fracture-free 6H-SiC (0001) surfaces were generated in polishing with the existence of the residual crystal defects, which were associated with the origin of defects in single crystal growth. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
No abstract.