8 resultados para materials processing technology
em University of Queensland eSpace - Australia
Resumo:
"Wills' Mineral Processing Technology" provides practising engineers and students of mineral processing, metallurgy and mining with a review of all of the common ore-processing techniques utilized in modern processing installations. Now in its Seventh Edition, this renowned book is a standard reference for the mineral processing industry. Chapters deal with each of the major processing techniques, and coverage includes the latest technical developments in the processing of increasingly complex refractory ores, new equipment and process routes. This new edition has been prepared by the prestigious J K Minerals Research Centre of Australia, which contributes its world-class expertise and ensures that this will continue to be the book of choice for professionals and students in this field. This latest edition highlights the developments and the challenges facing the mineral processor, particularly with regard to the environmental problems posed in improving the efficiency of the existing processes and also in dealing with the waste created. The work is fully indexed and referenced. -The classic mineral processing text, revised and updated by a prestigious new team -Provides a clear exposition of the principles and practice of mineral processing, with examples taken from practice -Covers the latest technological developments and highlights the challenges facing the mineral processor -New sections on environmental problems, improving the efficiency of existing processes and dealing with waste.
Resumo:
Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
Resumo:
Semisolid metal forming has now been accepted as a viable technology for production of components with complex shape and high integrity. The advantages of semisolid metal forming can only be achieved when the feedstock material has a non-dendritic semisolid structure. A controlled nucleation method has been developed to produce such structures for semisolid forming. By controlling grain nucleation and growth, fine-grained and non-dendritic microstructures that are suitable for semisolid casting can be generated. The method was applied to hypoeutectic and hypereutectic Al-Si casting alloys, Al wrought alloys and a Mg alloy. Parameters such as pouring temperature, cooling rate and grain refiner addition were controlled to achieve copious nucleation, nuclei survival and dendritic growth suppression during solidification. The influences of the controlling parameters on the formation of semisolid structure were different for each of these alloy groups. The as-cast structures were then partially remelted and isothermally held. Semisolid structures were developed and followed by semisolid casting into a stepped die.
Resumo:
Papers in this issue of Natural Resources Research are from the “Symposium on the Application of Neural Networks to the Earth Sciences,” held 20–21 August 2002 at NASA Moffet Field, Mountain View, California. The Symposium represents the Seventh International Symposium on Mineral Exploration (ISME-02). It was sponsored by the Mining and Materials Processing Institute of Japan (MMIJ), the US Geological Survey, the Circum-Pacific Council, and NASA. The ISME symposia have been held every two years in order to bring together scientists actively working on diverse quantitative methods applied to the earth sciences. Although the title, International Symposium on Mineral Exploration, suggests exclusive focus on mineral exploration, interests and presentations always have been wide-ranging—talks presented at this symposium are no exception.
Resumo:
The power of advanced transmission electron microscopy in determining the nanostructures and chemistry of nanosized materials on the applications in semiconductor quantum structures was demonstrated.
Resumo:
Hydrogen storage in traditional metallic hydrides can deliver about 1.5 to 2.0 wt pct hydrogen but magnesium hydrides can achieve more than 7 wt pct. However, these systems suffer from high temperature release drawback and chemical instability problems. Recently, big improvements of reducing temperature and increasing kinetics of hydrogenation have been made in nanostructured Mg-based composites. This paper aims to provide an overview of the science and engineering of Mg materials and their nanosized composites with nanostructured carbon for hydrogen storage. The needs in research including preparation of the materials, processing and characterisation and basic mechanisms will be explored. The preliminary experimental results indicated a promising future for chemically stable hydrogen storage using carbon nanotubes modified metal hydrides under lower temperatures.