3 resultados para interface states
em University of Queensland eSpace - Australia
Resumo:
Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics.
Resumo:
Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally.
Resumo:
We calculate tangential momentum coefficients for the exchange of momentum between molecules in transport and the internal surface of a membrane pore, modelled as a simple atomic structure. We introduce a local specular reflection (LSR) hypothesis, which states that impinging molecules undergo mirror-like reflection in a plane tangent to a surface atom at the point of impact. As a consequence, the components of the velocity, parallel to the direction of flow will (in general) change on impact. The overall effect is a loss of tangential momentum, since more is lost in the upstream direction than is gained in the downstream direction. The loss of tangential momentum is greater when the size ratio of fluid to solid atom is small, allowing more steeply inclined impact planes to become accessible to the fluid phase molecules. (c) 2005 Elsevier B.V. All rights reserved.