14 resultados para immune cells
em University of Queensland eSpace - Australia
Resumo:
The functional integrity of the immune system is essential for peripheral antinociception. Previous studies have demonstrated that immune cells elicit potent antinociception in inflamed tissues and that corticotropin-releasing factor-induced antinociception is significantly inhibited in animals that have undergone cyclosporin A (CsA)-induced immunosuppression. In this study, we examined the effect of a single bolus of CsA on inflammatory nociception. CsA-treated rats had substantially increased nociception compared with nonimmunosuppressed rats, consistent with a reduction in circulating and infiltrating lymphocytes. Furthermore, CsA-treated rats had inhibition of corticotropin-releasing factor-induced immune-derived antinociception, which was dose-dependently reversed by IV injection of concanavalin A-activated donor lymphocytes (1.0-7.0 X 10(6) cells/0.1 mL). In conclusion, our findings provided further evidence that opioid-containing immune cells are essential for peripheral analgesia. It is evident from these findings that control of inflammatory pain relies heavily on a functioning immune system.
Resumo:
Objective. NKT cells have diverse immune regulatory functions including activation of cells involved in Th1- and Th2-type immune activities. Most previous studies have investigated the functions of NKT cells as a single family but more recent evidence indicates the distinct functional properties of NKT cell subpopulation. This study aims to determine whether NKT cell subpopulations have different stimulatory activities on other immune cells that may affect the outcome of NKT cell-based immunotherapy. Methods. NKT cells and NKT cell subpopulations (CD4(+)CD8(-), CD4(-)CD8(+), CD4(-)CD8(+)) were cocultured with PBMC and their activities on immune cells including CD4(+) and CD8(+) T cells, NK cells, and B cells were assessed by flow cytometry. The production of cytokines in culture was measured by enzyme-linked immunsorbent assay. Results. The CD4(+)CD8(-) NKT cells demonstrated substantially greater stimulatory activities on CD4(+) T cells, NK cells, and B cells than other NKT cell subsets. The CD4(-)CD8(+) NKT cells showed the greatest activity on CD8(+) T cells, and were the only NKT cell subset that activated these immune cells. The CD4(-)CD8(-) NKT cells showed moderate stimulatory activity on CD4(+) T cells and the least activity on other immune cells. Conclusion. The results here suggest that NKT cell subpopulations differ in their abilities to stimulate other immune cells. This highlights the potential importance of manipulating specific NKT cell subpopulations for particular therapeutic situations and of evaluating subpopulations, rather than NKT cells as a group, during investigation of a possible role of NKT cells in various disease settings. (c) 2006 International Society for Experimental Hematology. Published by Elsevier Inc.
Resumo:
Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
The aim of this review is to analyse critically the recent literature on the clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplant recipients. Dosage and target concentration recommendations for tacrolimus vary from centre to centre, and large pharmacokinetic variability makes it difficult to predict what concentration will be achieved with a particular dose or dosage change. Therapeutic ranges have not been based on statistical approaches. The majority of pharmacokinetic studies have involved intense blood sampling in small homogeneous groups in the immediate post-transplant period. Most have used nonspecific immunoassays and provide little information on pharmacokinetic variability. Demographic investigations seeking correlations between pharmacokinetic parameters and patient factors have generally looked at one covariate at a time and have involved small patient numbers. Factors reported to influence the pharmacokinetics of tacrolimus include the patient group studied, hepatic dysfunction, hepatitis C status, time after transplantation, patient age, donor liver characteristics, recipient race, haematocrit and albumin concentrations, diurnal rhythm, food administration, corticosteroid dosage, diarrhoea and cytochrome P450 (CYP) isoenzyme and P-glycoprotein expression. Population analyses are adding to our understanding of the pharmacokinetics of tacrolimus, but such investigations are still in their infancy. A significant proportion of model variability remains unexplained. Population modelling and Bayesian forecasting may be improved if CYP isoenzymes and/or P-glycoprotein expression could be considered as covariates. Reports have been conflicting as to whether low tacrolimus trough concentrations are related to rejection. Several studies have demonstrated a correlation between high trough concentrations and toxicity, particularly nephrotoxicity. The best predictor of pharmacological effect may be drug concentrations in the transplanted organ itself. Researchers have started to question current reliance on trough measurement during therapeutic drug monitoring, with instances of toxicity and rejection occurring when trough concentrations are within 'acceptable' ranges. The correlation between blood concentration and drug exposure can be improved by use of non-trough timepoints. However, controversy exists as to whether this will provide any great benefit, given the added complexity in monitoring. Investigators are now attempting to quantify the pharmacological effects of tacrolimus on immune cells through assays that measure in vivo calcineurin inhibition and markers of immuno suppression such as cytokine concentration. To date, no studies have correlated pharmacodynamic marker assay results with immunosuppressive efficacy, as determined by allograft outcome, or investigated the relationship between calcineurin inhibition and drug adverse effects. Little is known about the magnitude of the pharmacodynamic variability of tacrolimus.
Resumo:
Immunotherapy of tumours using T cells expanded in vitro has met with mixed clinical success suggesting that a greater understanding of tumour/T-cell interaction is required. We used a HPV16E7 oncoprotein-based mouse tumour model to study this further. In this study, we demonstrate that a HPV16E7 tumour passes through at least three stages of immune susceptibility over time. At the earliest time point, infusion of intravenous immune cells fails to control tumour growth although the same cells given subcutaneously at the tumour site are effective. In a second stage, the tumour becomes resistant to subcutaneous infusion of cells but is now susceptible to both adjuvant activated and HPV16E7-specific immune cells transferred intravenously. In the last phase, the tumour is susceptible to intravenous transfer of HPV16E7-specific cells, but not adjuvant-activated immune cells. The requirement for IFN-gamma and perforin also changes with each stage of tumour development. Our data suggest that effective adoptive T-cell therapy of tumour will need to be matched with the stage of tumour development.
Resumo:
An effective immune system requires rapid and appropriate activation of inflammatory mechanisms but equally rapid and effective resolution of the inflammatory state. A review of the canonical host response to gram-negative bacteria, the lipopolysaccharide-Toll-like receptor 4 signaling cascade, highlights the induction of repressors that act at each step of the activation process. These inflammation suppressor genes are characterized by their induction in response to pathogen, typically late in the macrophage activation program, and include an expanding class of dominant-negative proteins derived from alternate splicing of common signaling components. Despite the expanse of anti-inflammatory mechanisms available to an activated macrophage, the frailty of this system is apparent in the large numbers of genes implicated in chronic inflammatory diseases. This apparent lack of redundancy between inflammation suppressor genes is discussed with regard to evolutionary benefits in generating a heterogeneous population of immune cells and consequential robustness in defense against new and evolving pathogens.
Resumo:
Different DNA motifs are required for optimal stimulation Of mouse and human immune cells by CpG oligode-oxynucleotides (ODN). These species differences presumably reflect sequence differences in TLR9, the CPG DNA receptor. In this study, we show that this sequence specificity is restricted to phosphorothioate (PS)-modified ODN and is not observed when a natural phosphodiester backbone is used. Thus, human and mouse cells have not evolved to recognize different CpG motifs in natural DNA. Nonoptimal PS-ODN (i.e., mouse CpG motif on human cells and vice versa) gave delayed and less sustained phosphorylation of p38 AWK than optimal motifs. When the CpG dinucleotide was inverted to GC In each ODN some residual activity of the PS-ODN was retained in a species-specific, TLR-9-dependent manner. Thus, TLR9 may he responsible for mediating many published CpG-independent responses to PS-ODN.
Resumo:
Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor alpha(TNF alpha) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNF alpha is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor ( SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasma membrane, and we investigated a possible role for lipid rafts in TNF alpha trafficking and secretion. TNF alpha surface delivery and secretion were found to be cholesterol-dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasma membrane, particularly on filopodia. Imaging the early stages of TNF alpha surface distribution revealed these puncta to be the initial points of TNF alpha delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol-dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.
Resumo:
Immune cells respond to bacterial DNA containing unmethylated CpG motifs via Toll-like receptor 9 (TLR9). Given the apparent role of TLR9 in development of systemic lupus erythernatosus (SLE), there is interest in the development of TLR9 inhibitors. TLR9-mediated responses are reported to be inhibited by a confusing variety of different DNA sequences and structures. To aid characterization, we have provisionally categorized TLR9-inhibitory oligodeoxynucleoti des (ODN) into 4 classes, on the basis of sequence and probable mode of action. Class I are short G-rich ODN, which show sequence-specific inhibition of all TLR9 responses, and may be direct competitive inhibitors for DNA binding to TLR9. Class II are telomeric repeat motifs that inhibit STAT signaling, and thus are not specific to TLR9 responses. Because Class II ODN are generally made as 24-base phosphorothioate-modified ODN (PS-ODN), they also fall into Class IV, defined as long PS-ODN, which inhibit TLR9 responses in a sequence-nonspecific manner. Class III includes oligo (dG) that forms a 4-stranded structure and inhibits DNA uptake. The Class I G-rich motifs show the most promise as selective and potent TLR9 inhibitors for therapeutic applications.