5 resultados para hybrid modeling

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent study, severe distortions in the proton images of an excised, fixed, human brain in an 11.1 Tesla/40 cm MR instrument have been observed, and the effect modeled on phantom images using a finite difference time domain (FDTD) model. in the present study, we extend these simulations to that of a complete human head, employing a hybrid FDTD and method of moments (MoM) approach, which provides a validated method for simulating biological samples in coil structures. The effect of fixative on the image distortions is explored. importantly, temperature distributions within the head are also simulated using a bioheat method based on parameters derived from the electromagnetic simulations. The MoM/FDTD simulations confirm that the transverse magnetic field (B,) from a ReCav resonator exhibits good homogeneity in air but strong inhomogeneity when loaded with the head with or without fixative. The fixative serves to increase the distortions, but they are still significant for the in vivo simulations. The simulated signal intensity (SI) distribution within the sample confirm the distortions in the experimental images are caused by the complex interactions of the incident electromagnetic fields with tissue, which is heterogeneous in terms of conductivity and permittivity. The temperature distribution is likewise heterogeneous, raising concerns regarding hot spot generation in the sample that may exceed acceptable levels in future in vivo studies. As human imaging at 11.1 T is some time away, simulations are important in terms of predicting potential safety issues as well as evaluating practical concerns about the quality of images. Simulation on a whole human head at 11.1 T implies the wave behavior presents significant engineering challenges for ultra-high-field (UHF) MRI. Novel strategies will have to be employed in imaging technique and resonator design for UHF MRI to achieve the theoretical signal-to-noise ratio (SNR) improvements it offers over lower field systems. (C) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to grow microscopic spherical birefringent crystals of vaterite, a calcium carbonate mineral, has allowed the development of an optical microrheometer based on optical tweezers. However, since these crystals are birefringent, and worse, are expected to have non-uniform birefringence, computational modeling of the microrheometer is a highly challenging task. Modeling the microrheometer - and optical tweezers in general - typically requires large numbers of repeated calculations for the same trapped particle. This places strong demands on the efficiency of computational methods used. While our usual method of choice for computational modelling of optical tweezers - the T-matrix method - meets this requirement of efficiency, it is restricted to homogeneous isotropic particles. General methods that can model complex structures such as the vaterite particles, such as finite-difference time-domain (FDTD) or finite-difference frequency-domain (FDFD) methods, are inefficient. Therefore, we have developed a hybrid FDFD/T-matrix method that combines the generality of volume-discretisation methods such as FDFD with the efficiency of the T-matrix method. We have used this hybrid method to calculate optical forces and torques on model vaterite spheres in optical traps. We present and compare the results of computational modelling and experimental measurements.