13 resultados para general strain theory
em University of Queensland eSpace - Australia
Resumo:
The mechanical behavior of the vertebrate skull is often modeled using free-body analysis of simple geometric structures and, more recently, finite-element (FE) analysis. In this study, we compare experimentally collected in vivo bone strain orientations and magnitudes from the cranium of the American alligator with those extrapolated from a beam model and extracted from an FE model. The strain magnitudes predicted from beam and FE skull models bear little similarity to relative and absolute strain magnitudes recorded during in vivo biting experiments. However, quantitative differences between principal strain orientations extracted from the FE skull model and recorded during the in vivo experiments were smaller, and both generally matched expectations from the beam model. The differences in strain magnitude between the data sets may be attributable to the level of resolution of the models, the material properties used in the FE model, and the loading conditions (i.e., external forces and constraints). This study indicates that FE models and modeling of skulls as simple engineering structures may give a preliminary idea of how these structures are loaded, but whenever possible, modeling results should be verified with either in vitro or preferably in vivo testing, especially if precise knowledge of strain magnitudes is desired. (c) 2005 Wiley-Liss, Inc.
Resumo:
The sheathed filamentous bacterium known as strain CT3, isolated by micromanipulation from an activated sludge treatment plant in Italy, is a member of the genus Thiothrix in the gamma-Proteobacteria according to 16S rDNA sequence analysis. The closest phylogenetic neighbours of strain CT3 are strains I and Q(T), which were also isolated from activated sludge and belong to the species Thiothrix fructosivorans. These strains have respectively 99.2 and 99.4 % similarity to CT3 by 16S rDNA sequence comparison. CT3 shows 63-67 % DNA-DNA hybridization with strain I, which is the only currently viable strain of T. fructosivorans. CT3 is the second strain in the genus Thiothrix that has been shown to be capable of growing autotrophically with reduced sulfur compounds as the sole energy source; autotrophy was also confirmed in strain I. The first reported chemolithoautotrophic isolate of this genus was a strain of 'Thiothrix ramosa' that was isolated from a hydrogen sulfide spring and is morphologically distinguishable from all other described strains of Thiothrix, including CT3. CT3 is an aerobic organism that is non-fermentative, not capable of denitrification and able to grow heterotrophically. Autotrophy in the genus Thiothrix should be investigated more fully to better define the taxonomy of this genus.
Resumo:
The aim of this article is to demonstrate that the apparent controversy between the infinitesimal deformation (ID) approach and the phenomenological theory of martensitic transformations (PTMTs) in predicting the crystallographic characteristics of a martensitic transformation is entirely based on unjustified approximations associated with the way in which the ID calculations are performed. When applied correctly, the ID approach is shown to be absolutely identical to the PTMT. Nevertheless, there may be some advantages in using the ID approach. In particular, it is somewhat simpler than the PTMT; it is based on a physical concept that is easier to understand and, most important, it may provide a tool for investigating some of the features of martensitic transformations that have eluded explanation via the PTMT.
Resumo:
The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment-or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.
Resumo:
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K-SV) when air-side resistance dominates and increase with K-SV when sampler-side resistance dominates.
Resumo:
We have previously shown that a division of the f-shell into two subsystems gives a better understanding of the cohesive properties as well the general behavior of lanthanide systems. In this article, we present numerical computations, using the suggested method. We show that the picture is consistent with most experimental data, e.g., the equilibrium volume and electronic structure in general. Compared with standard energy band calculations and calculations based on the self-interaction correction and LIDA + U, the f-(non-f)-mixing interaction is decreased by spectral weights of the many-body states of the f-ion. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.
Resumo:
Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infection (UTI), very little is known about the mechanisms by which these strains colonize the urinary tract. Bacterial adhesion conferred by specific surface-associated adhesins is normally considered as a prerequisite for colonization of the urinary tract. The prototype ABU E coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. This study characterized the molecular status of one of the primary adhesion factors known to be associated with UTI, namely F1C fimbriae, encoded by the foc gene cluster. F1C fimbriae recognize receptors present in the human kidney and bladder. Expression of the foc genes was found to be up-regulated in human urine. It was also shown that although strain 83972 contains a seemingly intact foc gene cluster, F1C fimbriae are not expressed. Sequencing and genetic complementation revealed that the focD gene, encoding a component of the F1C transport and assembly system, was non-functional, explaining the inability of strain 83972 to express this adhesin. The data imply that E. coli 83972 has lost its ability to express this important colonization factor as a result of host-driven evolution. The ancestor of the strain seems to have been a pyelonephritis strain of phylogenetic group B2. Strain 83972 therefore represents an example of bacterial adaptation from pathogenicity to commensalism through virulence factor loss.
Resumo:
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.
Resumo:
In the absence of an external frame of reference-i.e., in background independent theories such as general relativity-physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original non-relational theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the collapse of the wave packet as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of spin networks introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.
Resumo:
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.