13 resultados para fatty acid supplementation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marsupial spermatozoa tolerate cold shock well, but differ in cryopreservation tolerance. In an attempt to explain these phenomena, the fatty acid composition of the sperm membrane from caput and cauda epididymides of the Eastern grey kangaroo, koala, and common wombat was measured and membrane sterol levels were measured in cauda epididymidal spermatozoa. While species-related differences in the levels of linolenic acid (18:3, n-6) and arachidonic acid (20:4, n-6) were observed in caput epididymal spermatozoa, these differences failed to significantly alter the ratio of unsaturated/saturated membrane fatty acids. However in cauda epididymidal spermatozoa, the ratio of unsaturated/saturated membrane fatty acids in koala and kangaroo spermatozoa was approximately 7.6 and 5.2, respectively; substantially higher than any other mammalian species so far described. Koala spermatozoal membranes had a higher ratio of unsaturated/saturated membrane fatty acids than that of wombat spermatozoa (t = 3.81; df = 4; p less than or equal to 0.02); however, there was no significant difference between wombat and kangaroo spermatozoa. The highest proportions of DHA (22:6, n-3), the predominant membrane fatty acid in cauda epididymidal spermatozoa, were found in wombat and koala spermatozoa. While species-related differences in membrane sterol levels (cholesterol and desmosterol) were observed in cauda epididymidal spermatozoa, marsupial membrane sterol levels are very low. Marsupial spermatozoal membrane analyses do not support the hypothesis that a high ratio of saturated/unsaturated membrane fatty acids and low membrane sterol levels predisposes spermatozoa to cold shock damage. Instead, cryogenic tolerance appears related to DHA levels. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumour suppressor gene, WT1, encodes a zinc-finger protein that is mutated in Wilms' tumours and other malignancies. WT1 is one of the earliest genes expressed during kidney development. WT1 proteins can activate and repress putative target genes in vitro, although the in vivo relevance of such target genes often remains unverified. To better understand the role of WT1 in tumorigenesis and kidney development, we need to identify downstream target genes. In this study, we have expression pro. led human embryonic kidney 293 cells stably transfected to allow inducible WT1 expression and mouse mesonephric M15 cells transfected with a WT1 antisense construct to abolish endogenous expression of all WT1 isoforms to identify WT1-responsive genes. The complementary overlap between the two cell lines revealed a pronounced repression of genes involved in cholesterol biosynthesis by WT1. This pathway is transcriptionally regulated by the sterol responsive element-binding proteins (SREBPs). Here, we provide evidence that the C-terminal end of the WT1 protein can directly interact with SREBP, suggesting that WT1 may modify the transcriptional function of SREBPs via a direct protein-protein interaction. Therefore, the tumour suppressor activities of WT1 may be achieved by repressing the mevalonate pathway, thereby controlling cellular proliferation and promoting terminal differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid composition of longissimus thoracis (LT) muscle and adipose tissues (subcutaneous and intermuscular fat) from castrated and entire male Boer goat bucks was investigated. Sixty Boer bucks in groups of between three and five animals were slaughtered at 5, 15, 30, 45, 60, 75, 90 and 105 kg live weight (5 and 15 kg animals were not castrated). The fatty acid composition of LT muscle from castrated and entire Boers was significantly affected by slaughter weight. The fatty acid content of LT muscle and subcutaneous and intermuscular fat from both castrated and entire Boer bucks was primarily composed of oleic acid followed by palmitic and stearic acid. Both oleic and palmitic acid increased with slaughter weight whereas stearic acid decreased. LT muscle from castrated Boer bucks contained higher amounts of desirable fatty acids. In contrast to slaughter weight, castration of Boer bucks resulted in only minor changes in fatty acid composition of adipose tissues. It can be concluded that slaughter weight plays a role in changing the fatty acid composition of LT muscle and adipose tissues from Boer bucks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin E and a-lipoic acid are potent nutritional antioxidants, and when used together, their antioxidant capabilities are improved as a-lipoic acid recycles vitamin E. Supplementation of vitamin E has been shown to prolong platelet aggregation but the effects of vitamin E and alpha-lipoic acid supplementation on bleeding tendency have yet to be reported. Young, male rats consumed either control diet (n=5) or vitamin E and a-lipoic acid-supplemented diet (n=5) for 14 weeks. Activated partial thromboplastin time (APTT) and prothrombin time (PT) were measured as markers of intrinsic and extrinsic coagulation pathways respectively in addition to lipid peroxidation (malondialdehyde). Supplementation significantly prolonged APTT (23.8 +/- 1.5 vs 31.4 +/- 1.2s, p < 0.05) compared to the con-trol diet; however, there was no significant difference in PT (27.8 +/- 1.5 vs 26.6 +/- 0.9s, p > 0.05). While vitamin E was increased (p < 0.05), there was no significant difference in plasma levels of malondialdehyde (p > 0.05). Dietary supplementation of vitamin E and alpha-lipoic acid increases bleeding tendency via inhibition of the intrinsic coagulation pathway with no change in markers of lipid peroxidation. Such supplementation could benefit patients with cardiovascular disease who exhibit elevated levels of coagulation and oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of antioxidant supplementation in the prevention of cardiovascular disease appears equivocal, however the use of more potent antioxidant combinations than those traditionally used may exert a more positive effect. We have shown previously that supplementation of vitamin E and α-lipoic acid increases cardiac performance during post-ischemia reperfusion in older rats and increases Bcl-2 levels in endothelial cells. The purpose of this study was to examine the effects of vitamin E and α-lipoic acid supplementation on myocardial gene expression with a view to determine their mechanism of action. Young male rats received either a control (n=7) or vitamin E and α-lipoic acid supplemented diet (n=8) for 14 weeks. RNA from myocardial tissue was then amplified and samples were pooled within groups and competitively hybridized to 5K oligonucleotide rat microarrays. The relative expression of each gene was then compared to the control sample. Animals that received the antioxidant-supplemented diet exhibited upregulation (>1.5×) of 13 genes in the myocardium with 2 genes downregulated.� �Upregulated genes include those involved in cell growth and maintenance (LynB, Csf1r, Akt2, Tp53), cell signaling (LynB, Csf1r) and signal transduction (Pacsin2, Csf1r). Downregulated genes encode thyroid (Thrsp) and F-actin binding proteins (Nexilin).