23 resultados para environmental scanning electron microscopy
em University of Queensland eSpace - Australia
Resumo:
Purpose: The aim of this study was to examine the enamel thickness of the maxillary primary incisors of preterm children with very low birth weight (< 1,500 g) compared to full-term children with normal birth weight. Methods: A total of 90 exfoliated maxillary primary central incisors were investigated using light microscopy and scanning electron microscopy (SEM). Three serial buccolingual ground sections of each tooth were examined under light microscopy, and maximum dimensions of the prenatally and postnatally formed enamel were measured. Results: The enamel of preterm teeth was approximately 20% thinner than that for fullterm teeth. Most of the reduction was observed in the prenatally formed enamel. This was 5 to 13 times thinner than that for full-term children (P < .001). The catch-up thickness of postnatally formed enamel did not compensate fully for the decrease in prenatal enamel (P < .001). Although none of the teeth used in this study had enamel defects visible to the naked eye, 52% of preterm teeth showed enamel hypoplasia under SEM, compared with only 16% found on full-term teeth (P < .001). These defects were present as pits or irregular, shallow areas of missing enamel. Conclusions: Preterm primary dental enamel is abnormal in surface quality, and is significantly thinner compared to full-term enamel. The thinner enamel is due mainly to reduced prenatal growth and results in smaller dimensions of the primary dentition.
Resumo:
Moisture transport and dimensional change during wood drying or wetting processes were analyzed based on pictures from an environmental scanning electron microscope (ESEM). This provides quantitative relationships between dimensional changes of total area, cell wall, and lumen, and moisture content for earlywood and latewood. Earlywood and latewood behave similarly but show some quantitative differences. The overall outcome for sections containing both kinds of wood seems to be dominated by the latewood behavior. The observed strain behavior of wood during drying is anisotropic in ways that are inconsistent with explanations solely related to microfibril orientation or earlywood/latewood interactions and more likely may be influenced by ray tracheids.
Resumo:
Micro-Raman spectroscopy was applied to the study of multiple layered wall paints from the Rosalila temple, Copan, Honduras, which dates to the Middle Classic period (A.D. 520 to 655). Samples of red, green and grey paint and a thick white overcoating were analysed. The paint pigments have been identified as hematite, celadonite or green earth and a combined carbon/mica mixture. By combining Raman spectroscopy with micro-ATR infrared spectroscopy and environmental scanning electron microscopy (ESEM), a detailed study has been made of the materials and processes used to make the stucco and paints. The use of green earth as a green pigment on Maya buildings has not been reported before. The combination of carbon and muscovite mica to create a reflective paint is also a novel finding.
Resumo:
Powder metallurgy alloys are typically inhomogeneous with a significant amount of porosity. This complicates conventional transmission electron microscopy sample preparation. However, the use of focused ion beam milling allows site specific transmission electron microscopy samples to be prepared in a short amount of time. This paper presents a method that can be used to produce transmission electron microscopy samples from an Al-Cu-Mg PM alloy. (C) 2003 IoM Communications Ltd. Published by Maney for the Institute of Materials, Minerals and Mining.
Resumo:
The long-term biostability of a novel thermoplastic polyurethane elastomer (Elast-Eon(TM) 2 80A) synthesized using poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS) macrodiols has been studied using an in vivo ovine model. The material's biostability was compared with that of three commercially available control materials, Pellethane(R) 2363-80A, Pellethane(R) 2363-55D and Bionate(R) 55D, after subcutaneous implantation of strained compression moulded flat sheet dumbbells in sheep for periods ranging from 3 to 24 months. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to assess changes in the surface chemical structure and morphology of the materials. Gel permeation chromatography, differential scanning calorimetry and tensile testing were used to examine changes in bulk characteristics of the materials. The results showed that the biostability of the soft flexible PDMS-based test polyurethane was significantly better than the control material of similar softness, Pellethane(R) 80A, and as good as or better than both of the harder commercially available negative control polyurethanes. Pellethane(R) 55D and Bionate(R) 55D. Changes observed in the surface of the Pellethane(R) materials were consistent with oxidation of the aliphatic polyether soft segment and hydrolysis of the urethane bonds joining hard to soft segment with degradation in Pellethane(R) 80A significantly more severe than that observed in Pellethane(R) 55D. Very minor changes were seen on the surfaces of the Elast-Eon(TM) 2 80A and Bionate(R) 55D materials. There was a general trend of molecular weight decreasing with time across all polymers and the molecular weights of all materials decreased at a similar relative rate. The polydispersity ratio, M-w/M-n, increased with time for all materials. Tensile tests indicated that UTS increased in Elast-Eon(TM) 2 80A and Bionate(R) 55D following implantation under strained conditions. However, ultimate strain decreased and elastic modulus increased in the explanted specimens of all three materials when compared with their unimplanted unstrained counterparts. The results indicate that a soft, flexible PDMS-based polyurethane synthesized using 20% PHMO and 80% PDMS macrodiols has excellent long-term biostability compared with commercially available polyurethanes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The development of a strong, active granular sludge bed is necessary for optimal operation of upflow anaerobic sludge blanket reactors. The microbial and mechanical structure of the granules may have a strong influence on desirable properties such as growth rate, settling velocity and shear strength. Theories have been proposed for granule microbial structure based on the relative kinetics of substrate degradation, but contradict some observations from both modelling and microscopic studies. In this paper, the structures of four granule types were examined from full-scale UASB reactors, treating wastewater from a cannery, a slaughterhouse, and two breweries. Microbial structure was determined using fluorescence in situ hybridisation probing with 16S rRNA-directed oligonucleotide probes, and superficial structure and microbial density (volume occupied by cells and microbial debris) assessed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The granules were also modelled using a distributed parameter biofilm model, with a previously published biochemical model structure, biofilm modelling approach, and model parameters. The model results reflected the trophic structures observed, indicating that the structures were possibly determined by kinetics. Of particular interest were results from simulations of the protein grown granules, which were predicted to have slow growth rates, low microbial density, and no trophic layers, the last two of which were reflected by microscopic observations. The primary cause of this structure, as assessed by modelling, was the particulate nature of the wastewater, and the slow rate of particulate hydrolysis, rather than the presence of proteins in the wastewater. Because solids hydrolysis was rate limiting, soluble substrate concentrations were very low (below Monod half saturation concentration), which caused low growth rates. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics.
Resumo:
Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Microtome sections of proton exchange membrane cells produce a wide range of information ranging from macroscopic distribution of components through specimens in which the detailed distribution of catalyst particles can be observed. Using modern data management practices it is possible to combine information at different scales and correlate processing and performance data. Analytical electron microscopy reveals the compositional variations across used cells at the electrolyte/electrode interface. In particular analytical techniques indicate that sulphur concentrations are likely to diminish at the interface Nafion/anode interface. © 2006 Elsevier B.V. All rights reserved.