21 resultados para energy market

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Australian energy market is in the final stages of deregulation. These changes have created a dynamic environment which is highly volatile and competitive with respect to both demand and price. Our current research seeks to visualise aspects of the National Energy Market with a view to developing techniques which may be useful in identifying significant characteristics and/or drivers of these characteristics. In order to capture the complexity of the problem we explore a suite of different visualisation techniques, which, when combined into a unified package, highlight aspects of the problem. The particular problem visualised here is "Does the date exhibit characteristics which suggest that the time of day, day of the week, or the season, aflect the variation in demand and/or price?" © Austral. Mathematical Soc. 2005.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deregulation of power industry worldwide has delivered the efficiency gains to the society; meanwhile, the intensity of competition has increased uncertainty and risks to market participants. Consequently, market participants are keen to hedge the market risks and maintain a competitive edge in the market; and this is a good explanation to the flourish of electricity derivative market. In this paper, the authors gave a comprehensive review of derivative contract pricing methods and proposed a new framework for energy derivative pricing to suit the needs of a deregulated electricity market

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on measuring the extent to which market power has been exercised in a recently deregulated electricity generation sector. Our study emphasises the need to consider the concept of market power in a long-run dynamic context. A market power index is constructed focusing on differences between actual market returns and long-run competitive returns, estimated using a programming model devised by the authors. The market power implications of hedge contracts are briefly considered. The state of Queensland Australia is used as a context for the analysis. The results suggest that generators have exercised significant market power since deregulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-term planning method for the electricity market is to simulate market operation into the future. Outputs from market simulation include indicators for transmission augmentation and new generation investment. A key input to market simulations is demand forecasts. For market simulation purposes, regional demand forecasts for each half-hour interval of the forecasting horizon are required, and they must accurately represent realistic demand profiles and interregional demand relationships. In this paper, a demand model is developed to accurately model these relationships. The effects of uncertainty in weather patterns and inherent correlations between regional demands on market simulation results are presented. This work signifies the advantages of probabilistic modeling of demand levels when making market-based planning decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Market administrators hold the vital role of maintaining sufficient generation capacity in their respective electricity market. However without the jurisdiction to dictate the generator types, locations and timing of new generation, the reliability of the system may be compromised by delayed entry of new generation. This paper illustrates a new generation investment methodology that can effectively present expected returns from the pool market; while concurrently searching for the type and placement of a new generator to fulfil system reliability requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology is proposed for the analysis of generation capacity investment in a deregulated market environment. This methodology proposes to make the investment appraisal using a probabilistic framework. The probabilistic production simulation (PPC) algorithm is used to compute the expected energy generated, taking into account system load variations and plant forced outage rates, while the Monte Carlo approach has been applied to model the electricity price variability seen in a realistic network. The model is able to capture the price and hence the profitability uncertainties for generator companies. Seasonal variation in the electricity prices and the system demand are independently modeled. The method is validated on IEEE RTS system, augmented with realistic market and plant data, by using it to compare the financial viability of several generator investments applying either conventional or directly connected generator (powerformer) technologies. The significance of the results is assessed using several financial risk measures.