7 resultados para coordination of studies

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To improve the accuracy and completeness of reporting of studies of diagnostic accuracy, to allow readers to assess the potential for bias in a study, and to evaluate a study's generalisability. Methods The Standards for Reporting of Diagnostic Accuracy (STARD) steering committee searched the literature to identify publications on the appropriate conduct and reporting of diagnostic studies and extracted potential items into an extensive list. Researchers, editors, and members of professional organisations shortened this list during a two day consensus meeting, with the goal of developing a checklist and a generic flow diagram for studies of diagnostic accuracy. Results The search for published guidelines about diagnostic research yielded 33 previously published checklists, from which we extracted a list of 75 potential items. At the consensus meeting, participants shortened the list to a 25 item checklist, by using evidence, whenever available. A prototype of a flow diagram provides information about the method of patient recruitment, the order of test execution, and the numbers of patients undergoing the test under evaluation and the reference standard, or both. Conclusions Evaluation of research depends on complete and accurate reporting. If medical journals adopt the STARD checklist and flow diagram, the quality of reporting of studies of diagnostic accuracy should improve to the advantage of clinicians, researchers, reviewers, journals, and the public.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of reporting of studies of diagnostic accuracy is less than optimal. Complete and accurate reporting is necessary to enable readers to assess the potential for bias in the study and to evaluate the generalisability of the results. A group of scientists and editors has developed the STARD (Standards for Reporting of Diagnostic Accuracy) statement to improve the reporting the quality of reporting of studies of diagnostic accuracy. The statement consists of a checklist of 25 items and flow diagram that authors can use to ensure that all relevant information is present. This explanatory document aims to facilitate the use, understanding and dissemination of the checklist. The document contains a clarification of the meaning, rationale and optimal use of each item on the checklist, as well as a short summary of the available evidence on bias and applicability. The STARD statement, checklist, flowchart and this explanation and elaboration document should be useful resources to improve reporting of diagnostic accuracy studies. Complete and informative reporting can only lead to better decisions in healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensori-motor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuospatial body knowledge in infancy. Our technique is to compare infants' responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body pictures at 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.