6 resultados para context-based

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control Engineering is an essential part of university electrical engineering education. Normally, a control course requires considerable mathematical as well as engineering knowledge and is consequently regarded as a difficult course by many undergraduate students. From the academic point of view, how to help the students to improve their learning of the control engineering knowledge is therefore an important task which requires careful planning and innovative teaching methods. Traditionally, the didactic teaching approach has been used to teach the students the concepts needed to solve control problems. This approach is commonly adopted in many mathematics intensive courses; however it generally lacks reflection from the students to improve their learning. This paper addresses the practice of action learning and context-based learning models in teaching university control courses. This context-based approach has been practised in teaching several control engineering courses in a university with promising results, particularly in view of student learning performances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of current and future wired and wireless networking technologies can be transformed into a seamless communication environments through application of context-based vertical handovers. Such seamless communication environments are needed for future pervasive/ubiquitous systems. Pervasive systems are context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover is one of many possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining the continuity of their applications. This paper proposes a vertical handover mechanism suitable for multimedia applications in pervasive systems. The paper focuses on the handover decision making process which uses context information regarding user devices, user location, network environment and requested QoS. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pervasive computing applications must be sufficiently autonomous to adapt their behaviour to changes in computing resources and user requirements. This capability is known as context-awareness. In some cases, context-aware applications must be implemented as autonomic systems which are capable of dynamically discovering and replacing context sources (sensors) at run-time. Unlike other types of application autonomy, this kind of dynamic reconfiguration has not been sufficiently investigated yet by the research community. However, application-level context models are becoming common, in order to ease programming of context-aware applications and support evolution by decoupling applications from context sources. We can leverage these context models to develop general (i.e., application-independent) solutions for dynamic, run-time discovery of context sources (i.e., context management). This paper presents a model and architecture for a reconfigurable context management system that supports interoperability by building on emerging standards for sensor description and classification.