34 resultados para buried hill

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-beaked echidnas have an impressive ability to submerge completely into soil or sand and remain there, cryptic, for long periods. This poses questions about how they manage their respiration, cut off from a free flow of gases. We measured the gradient in oxygen partial pressure (P-O2) away from the snouts of buried echidnas and oxygen consumption (V-O2) in five individuals under similar conditions, in two substrates with different air-filled porosities (f(a)). A theoretical diffusion model indicated that diffusion alone was insufficient to account for the flux of oxygen required to meet measured rates of V-O2. However, it was noticed that echidnas often showed periodic movements of the anterior part of the body, as if such movements were a deliberate effort to flush the tidal air space surrounding their nostrils. These 'flushing movements' were subsequently found to temporarily increase the levels of interstitial oxygen in the soil around the head region. Flushing movements were more frequent while V-O2 was higher during the burrowing process, and also in substrate with lower fa. We conclude that oxygen supply to buried echidnas is maintained by diffusion through the soil augmented by periodic flushing movements, which ventilate the tidal airspace that surrounds the nostrils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon migration pathways and organic mineral matter associations were used to identify brine pathways in Paleoproterozic to early Mesoproterozoic rocks from the Lawn Hill platform, Mount Isa. Several types of organic matter are identified, and their thermal imprints are used to reconstruct the thermal history of the northern to central parts of the Isa superbasin. Three major thermal hydrothermal episodes are recognized from the organic maturation studies. Isotherm plots on a 175-km-long structural-sedimentological north-south section of the Isa superbasin highlight specific fault systems that acted as hot fluid conduits during the geologic history of the basin. Some of these systems indicate continuing activity into the south Nicholson basin, supported by the presence of low reflectance (type B) bitumen. This bitumen has not been overprinted by later hydrothermal episodes and therefore represents the latest thermal event. Along the north-south profile a general southward increase in temperature is evident. The lowest temperatures are recorded in proximity to the basin margin on the southern flank of the Murphy inlier. Thermal processes and their sequence of events in the basin are recorded by organic maturation, subsequent hydrocarbon generation, its migration and destruction coincident with transport and precipitation of minerals. As some timing and trapping mechanisms for minerals may have analogues with hydrocarbon entrapment, relative timing of processes leading to organic maturation, hydrocarbon generation and migration are utilized in this study to enhance understanding of ore-grade mineralization. In the Proterozoic successions of the Mount Isa basin multiple hydrocarbon generation events are recognized. These events record the transient passage of potential metal-bearing fluids rather than background conductive heat flow from the basement. Such hydrothermal fluids are responsible for inverse maturation profiles in the vicinity of the Termite Range fault and extreme maturation (reflectance values) up to 6 percent Ro at the Grevillea prospect. At Century, intermediate Ro values of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mudrocks and carbonates of the Isa superbasin in the Lawn Hill platform in northern Australia host major base metal sulfide mineralization, including the giant strata-bound Century Zn-Pb deposit. Mineral paragenesis, stable isotope, and K-Ar dating studies demonstrate that long-lived structures such as the Termite Range fault acted as hot fluid conduits several times during the Paleoproterozoic and Mesoproterozoic in response to major tectonic events. Illite and chlorite crystallinity studies suggest the southern part of the platform has experienced higher temperatures (up to 300 degrees C) than similar stratigraphic horizons in the north. The irregular downhole variation of illite crystallinity values provides further information oil the thermal regime in the basin and shows that clay formation was controlled not only by temperature increase with depth but also by high water/rock ratios along relatively permeable zones. K-Ar dating of illite, in combination with other data, may indicate three major thermal events in the central and northern Lawn Hill platform Lit 1500, 1440 to 1400, and 1250 to 1150 Ma. This study did not detect the earlier Century base metal mineralizing event at 1575 Ma. 1500 Ma ages are recorded only in the south and correspond to the age of the Late Isan orogeny and deposition of the Lower Roper superbasin. They may reflect exhumation of a provenance region. The 1440 to 1300 Ma ages are related to fault reactivation and a thermal pulse at similar to 1440 to 1400 Ma possibly accompanied by fluid flow, with subsequent enhanced cooling possibly due to thermal relaxation or further crustal exhumation. The youngest thermal and/or fluid-flow event at 1250 to 1150 Ma is recorded mainly to the cast of the Tern-lite Range fault and may be related to the assembly of the Rodinian supercontinent. Fluids in equilibrium with illite that formed over a range of temperatures, at different times in different parts of the platform. have relatively uniform oxygen isotope compositions and more variable hydrogen isotope compositions (delta O-18 = 3.5-9.7 parts per thousand V-SMOW; delta D = -94 to -36 parts per thousand V-SMOW). The extent of the 180 enrichment and the variably depleted hydrogen isotope compositions suggest the illite interacted with deep-basin hypersaline brines that were composed of evaporated seawater and/or highly evolved meteoric water. Siderite is the most abundant iron-rich gangue phase in the Century Zn-Pb deposit, which is surrounded by all extensive ferroan carbonate alteration halo. Modeling suggests that the ore siderite formed at temperatures of 120 degrees to 150 degrees C, whereas siderite and ankerite in the alteration halo formed at temperatures of 150 degrees to 180 degrees C. The calculated isotopic compositions of the fluids are consistent with O-18-rich basinal brines and mixed inorganic and organic carbon Sources (6180 = 3-10 parts per thousand V-SMOW, delta C-13 = -7 to -3 parts per thousand V-PDB). in the northeast Lawn Hill platform carbonate-rich rocks preserve marine to early diagenetic carbon and oxygen isotope compositions, whereas ferroan carbonate cements in siltstones and shales in the Desert Creek borehole are O-18 and C-13 depleted relative to the sedimentary carbonates. The good agreement between temperature estimates from illite crystallinity and organic reflectance (160 degrees-270 degrees C) and inverse correlation with carbonate delta O-18 values indicates that organic maturation and carbonate precipitation in the northeast Lawn Hill platform resulted from interaction with the 1250 to 1150 Ma fluids. The calculated isotopic compositions of the fluid are consistent with evolved basinal brine (delta O-18 = 5.1-9.4 parts per thousand V-SMOW; delta C-13 = -13.2 to -3.7 parts per thousand V-PDB) that contained a variable organic carbon component from the oxidation and/or hydrolysis of organic matter in the host sequence. The occurrence of extensive O-18- and C-13-depleted ankerite and siderite alteration in Desert Creek is related to the high temperature of the 1250 to 1150 Ma fluid-flow event in the northeast Lawn Hill platform, in contrast to the lower temperature fluids associated with the earlier Century Zn-Pb deposit in the central Lawn Hill platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choice of the operational frequency is one of the most responsible parts of any radar design process. Parameters of radars for buried object detection (BOD) are very sensitive to both carrier frequency and ranging signal bandwidth. Such radars have a specific propagation environment with a strong frequency-dependent attenuation and, as a result, short operational range. This fact dictates some features of the radar's parameters: wideband signal-to provide a high range resolution (fractions of a meter) and a low carrier frequency (tens or hundreds megahertz) for deeper penetration. The requirement to have a wideband ranging signal and low carrier frequency are partly in contradiction. As a result, low-frequency (LF) ultrawide-band (UWB) signals are used. The major goal of this paper is to examine the influence of the frequency band choice on the radar performance and develop relevant methodologies for BOD radar design and optimization. In this article, high-efficient continuous wave (CW) signals with most advanced stepped frequency (SF) modulation are considered; however, the main conclusions can be applied to any kind of ranging signals.

Relevância:

20.00% 20.00%

Publicador: