113 resultados para association cortex
em University of Queensland eSpace - Australia
Resumo:
This study was undertaken to assess associations between age, gender, cigarette smoke and non-workplace cadmium exposure, and liver pathology and inter-individual variation in cytochrome P450 (CYP) expression in human tissues. Autopsy specimens of twenty-eight Queensland residents whose ages ranged from 3 to 89 years were analyzed for the presence of nine CYP protein isoforms by immunoblotting. All subjects were Caucasians and their liver cadmium contents ranged from 0.11 to 3.95 kg/g wet weight, while their kidney cadmium contents were in the range of 2 to 63 mug/g wet weight. CYP1A2, CYP2A6, CYP2D6, CYP3A4, and CYP3A5 were detected in liver but not in kidney, and CYP1A1 and CYP1B1 were not found in liver or kidney. Lowered liver CYP2C8/19 protein contents were found to be associated with liver pathology. Importantly, we show elevated levels of CYP2C9 protein to be associated with cadmium accumulation in liver. No mechanism that explains this association is apparent, but there are two possibilities that require further study. One is that variation in CYP2C9 protein levels may be, in part, attributed to an individual's non-workplace exposure to cadmium, or an individual's CYP2C9 genotype may be a risk factor for cadmium accumulation. A positive correlation was found between liver CYP3A4 protein and subject age. Levels of liver CYPIA2 protein, but not other CYP forms, were increased in people more exposed to cigarette smoke, but there was no association between CYPIA2 protein and cadmium. CYP2A6 protein was found in all liver samples and CYP2A6 gene typing indicated the absence of CYP2A6 null allele (CYP2A6(D)) in this sample group, confirming very low prevalence of homozygous CYP2A6(D) in Caucasians. CYP2A6 gene types W/W, WIC, and CIC were not associated with variations in liver microsomal CYP2A6 protein. CYP2D6 protein was absent in all twenty-five kidney samples tested but was detectable in liver samples of all but two subjects, indicating the prevalence of the CYP2D6 null allele (CYP2D6(D)) in this sample group to be about 7%, typical of Caucasian populations. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The influence of temporal association on the representation and recognition of objects was investigated. Observers were shown sequences of novel faces in which the identity of the face changed as the head rotated. As a result, observers showed a tendency to treat the views as if they were of the same person. Additional experiments revealed that this was only true if the training sequences depicted head rotations rather than jumbled views: in other words, the sequence had to be spatially as well as temporally smooth. Results suggest that we are continuously associating views of objects to support later recognition, and that we do so not only on the basis of the physical similarity, but also the correlated appearance in time of the objects.
Resumo:
Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.
Resumo:
Recent studies have revealed a marked degree of variation in the pyramidal cell phenotype in visual, somatosensory, motor and prefrontal cortical areas in the brain of different primates, which are believed to subserve specialized cortical function. In the present study we carried out comparisons of dendritic structure of layer III pyramidal cells in the anterior and posterior cingulate cortex and compared their structure with those sampled from inferotemporal cortex (IT) and the primary visual area (V1) in macaque monkeys. Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors was determined, and somal areas measured. We found that pyramidal cells in anterior cingulate cortex were more branched and more spinous than those in posterior cingulate cortex, and cells in both anterior and posterior cingulate were considerably larger, more branched, and more spinous than those in area V1. These data show that pyramidal cell structure differs between posterior dysgranular and anterior granular cingulate cortex, and that pyramidal neurons in cingulate cortex have different structure to those in many other cortical areas. These results provide further evidence for a parallel between structural and functional specialization in cortex.
Resumo:
The action of alcohol on neuronal pathways has been an issue of increasing research focus, with numerous findings contradicting the previously accepted idea that its effect is nonspecific. The human NP22 (hNP22) gene was revealed by its elevated expression in the frontal cortex of the human alcoholic. The sequences of hNP22 and the rat orthologue rNP22 contain a number of domains consistent with those of cytoskeletal-interacting proteins. Localization of rNP22 is restricted to the cytoplasm and processes of neurons and it colocalizes with elements of the microfilament and microtubule matrices including filamentous actin (F-actin), alpha-tubulin, tau, and microtubule-associated protein 2 (MAP2). Withdrawal of Wistar rats after alcohol dependence induced by alcohol vapor produced elevated levels of rNP22 mRNA and protein in the cortex, CA2, and dentate gyrus regions of the hippocampus. In contrast, there was decreased rNP22 expression in the striatum after chronic ethanol exposure. Chronic ethanol exposure did not markedly alter rNP22 colocalization with F-actin, alpha-tubulin, or MAP2, although colocalization at the periphery of the neuronal soma with F-actin was observed only after chronic ethanol exposure and withdrawal. Rat NP22 colocalization with MAP2 was reduced during withdrawal, whereas association with alpha-tubulin and actin was maintained. These findings suggest that the effect of chronic ethanol exposure and withdrawal on rNP22 expression is region selective. Rat NP22 may affect microtubule or microfilament function, thereby regulating the neuroplastic changes associated with the development of alcohol dependence and physical withdrawal.
Resumo:
A biologically realizable, unsupervised learning rule is described for the online extraction of object features, suitable for solving a range of object recognition tasks. Alterations to the basic learning rule are proposed which allow the rule to better suit the parameters of a given input space. One negative consequence of such modifications is the potential for learning instability. The criteria for such instability are modeled using digital filtering techniques and predicted regions of stability and instability tested. The result is a family of learning rules which can be tailored to the specific environment, improving both convergence times and accuracy over the standard learning rule, while simultaneously insuring learning stability.
Resumo:
Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ^2 = 0.005, P = 0.95, MTHFR χ^2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS.
Resumo:
The influence of temporal association on the representation and recognition of objects was investigated. Observers were shown sequences of novel faces in which the identity of the face changed as the head rotated. As a result, observers showed a tendency to treat the views as if they were of the same person. Additional experiments revealed that this was only true if the training sequences depicted head rotations rather than jumbled views; in other words, the sequence had to be spatially as well as temporally smooth. Results suggest that we are continuously associating views of objects to support later recognition, and that we do so not only on the basis of the physical similarity, but also the correlated appearance in time of the objects.
Resumo:
Brain electrical activity related to working memory was recorded at 15 scalp electrodes during a visuospatial delayed response task. Participants (N = 18) touched the remembered position of a target on a computer screen after either a 1 or 8 sec delay. These memory trials were compared to sensory trials in which the target remained present throughout the delay and response periods. Distracter stimuli identical to the target were briefly presented during the delay on 30% of trials. Responses were less accurate in memory than sensory trials, especially after the long delay. During the delay slow potentials developed that were significantly more negative in memory than sensory trials. The difference between memory and sensory trials was greater at anterior than posterior electrodes. On trials with distracters, the slow potentials generated by memory trials showed further enhancement of negativity whereas there were minimal effects on accuracy of performance. The results provide evidence that engagement of visuospatial working memory generates slow wave negativity with a timing and distribution consistent with frontal activation. Enhanced brain activity associated with working memory is required to maintain performance in the presence of distraction. © 1997 by the Massachusetts Institute of Technology
Resumo:
Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.
Resumo:
Instantaneous outbursts in underground coal mines have occurred in at least 16 countries, involving both methane (CH4) and carbon dioxide (CO2). The precise mechanisms of an instantaneous outburst are still unresolved but must consider the effects of stress, gas content and physico-mechanical properties of the coal. Other factors such as mining methods (e.g., development heading into the coal seam) and geological features (e.g., coal seam disruptions from faulting) can combine to exacerbate the problem. Prediction techniques continue to be unreliable and unexpected outburst incidents resulting in fatalities are a major concern for underground coal operations. Gas content thresholds of 9 m(3)/t for CH4 and 6 m(3)/t for CO2 are used in the Sydney Basin, to indicate outburst-prone conditions, but are reviewed on an individual mine basis and in mixed as situations. Data on the sorption behaviour of Bowen Basin coals from Australia have provided an explanation for the conflicting results obtained by coal face desorption indices used for outburst-proneness assessment. A key factor appears to be different desorption rates displayed by banded coals, which is supported by both laboratory and mine-site investigations. Dull coal bands with high fusinite and semifusinite contents tend to display rapid desorption from solid coal, for a given pressure drop. The opposite is true for bright coal bands with high vitrinite contents and dull coal bands with high inertodetrinite contents. Consequently, when face samples of dull, fusinite-or semifusinite-rich coal of small particle size are taken for desorption testing, much gas has already escaped and low readings result. The converse applies for samples taken from coal bands with high vitrinite and/or inertodetrinite contents. In terms of outburst potential, it is the bright, vitrinite-rich and the dull, inertodetrinite-rich sections of a coal seam that appear to be more outburst-prone. This is due to the ability of the solid coal to retain gas, even after pressure reduction, creating a gas content gradient across the coal face sufficient to initiate an outburst. Once the particle size of the coal is reduced, rapid gas desorption can then take place. (C) 1998 Elsevier Science.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.