14 resultados para antipodal vertices
em University of Queensland eSpace - Australia
Resumo:
In this paper, a novel design procedure for designing a compact UWB antipodal Vivaldi antenna is presented. The antenna operates over the UWB frequency, band from 3.1 to more than 10.6 GHz. Its measured far-field radiation is directive and its peak gain is 10.2 dBi in the specified band. The antenna pulse response shows negligible distortion, indicating that it can be useful in a precision ranging and imaging instrumentation. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A cube factorization of the complete graph on n vertices, K-n, is a 3-factorization of & in which the components of each factor are cubes. We show that there exists a cube factorization of & if and only if n equivalent to 16 (mod 24), thus providing a new family of uniform 3 -factorizations as well as a partial solution to an open problem posed by Kotzig in 1979. (C) 2004 Wiley Periodicals, Inc.
Resumo:
We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of an (n - 1)-edge colouring of K-n (n even), and for an n-edge colouring of K-n (n odd) in which the colours assigned to the edges incident with two vertices are specified in advance.
Resumo:
Denote the set of 21 non-isomorphic cubic graphs of order 10 by L. We first determine precisely which L is an element of L occur as the leave of a partial Steiner triple system, thus settling the existence problem for partial Steiner triple systems of order 10 with cubic leaves. Then we settle the embedding problem for partial Steiner triple systems with leaves L is an element of L. This second result is obtained as a corollary of a more general result which gives, for each integer v greater than or equal to 10 and each L is an element of L, necessary and sufficient conditions for the existence of a partial Steiner triple system of order v with leave consisting of the complement of L and v - 10 isolated vertices. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Let e(1),e(2),... e(n) be a sequence of nonnegative integers Such that the first non-zero term is not one. Let Sigma(i=1)(n) e(i) = (q - 1)/2, where q = p(n) and p is an odd prime. We prove that the complete graph on q vertices can be decomposed into e(1) C-pn-factors, e(2) C-pn (1)-factors,..., and e(n) C-p-factors. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and (i) - n(j) less than or equal to 1 for any i, j is an element of {1, 2,..., k}, then C is equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in C is equitably k-coloured. For m = 4,5 and 6, we completely settle the existence problem for equitably 3-colourable m-cycle decompositions of complete graphs and complete graphs with the edges of a 1-factor removed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A maximum packing of any lambda-fold complete multipartite graph (where there are lambda edges between any two vertices in different parts) with edge-disjoint 4- cycles is obtained and the size of each minimum leave is given. Moreover, when lambda =2, maximum 4-cycle packings are found for all possible leaves.
Resumo:
Given a partial K-4-design (X, P), if x is an element of X is a vertex which occurs in exactly one block of P, then call x a free vertex. In this paper, a technique is described for obtaining a cubic embedding of any partial K-4-design with the property that every block in the partial design contains at least two free vertices.
Resumo:
Necessary conditions for the complete graph on n vertices to have a decomposition into 5-cubes are that 5 divides it - 1 and 80 divides it (it - 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for it even, thus completing the spectrum problem for the 5-cube and lending further weight to a long-standing conjecture of Kotzig. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has x(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar x(i) - x(j)vertical bar
Resumo:
Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.