93 resultados para alpha-pinene
em University of Queensland eSpace - Australia
Resumo:
The ability of adult cotton bollworm, Helicoverpa armigera (Hubner), to distinguish and respond to enantiomers of alpha-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (-) compared to the (+) form, indicating greater affinity for the (-) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (-) forms of alpha-pinene. Moths with no odor conditioning showed an innate preference for (+)-alpha-pinene. This preference displayed by naive moths was not significantly different from the preferences of moths conditioned on (+)-alpha-pinene. However, we found a significant difference in preference between moths conditioned on the (-) enantiomer compared to naive moths and moths conditioned on (+)-alpha-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of alpha-pinene than different odors (e.g., phenylacetaldehyde versus (-)-alpha-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.
Resumo:
We investigated the role of chemoreception in the host selection and oviposition behaviour of Helicoverpa armigera in the laboratory using five cotton genotypes and synthetic volatile terpenes. Female moths oviposited on substrates treated with methanol, ethanol, acetone and pentane extracts of leaves, squares and flowers of the cotton genotypes. Phytochemicals soluble in pentane were the most efficient in eliciting oviposition behaviour. In a two-way bioassay, pentane extracts of leaves or squares of a Multiple Host-plant Resistance genotype (MHR11), Deltapine commercial (DP90), and Smith Red Leaf (SRL) received significantly more eggs than solvent-treated controls. Extracts of squares of the native genotype Gossypium nelsonii did not receive more eggs. Females preferred DP90 and MHR11 to SRL and G. nelsonii. Female moths also laid more eggs on pentane extracts of MHR11 flowers than MHR11 leaves from preflowering, early flowering and peak-flowering plants. In a flight chamber, female moths used olfactory cues at short range to mediate oviposition and discrimination between host plants. Egg-laying, mated females were attracted at a distance (1.5 m) to volatile compounds released by whole plants and odours emanating from filter papers treated with synthetic volatile terpenes. Individually, the terpenes did not stimulate any significant oviposition response. However, there was a significant oviposition response to a mixture of equal volumes of the terpenes (trans-beta-caryophyllene, alpha-pinene, beta-pinene, myrcene, beta-bisabolol, and alpha-humulene). Conversely, antennectomised (moths with transected antennae), egg-laying, mated females did not stimulate any significant oviposition response. The significance of these findings in relation to H. armigera hostplant selection are discussed.
Resumo:
Microencapsulation of lemon oil was undertaken by kneading with beta-cyclodextrin, at a beta-cyclodextrin to lemon oil ratio of 88:12 (w/w). The resulting paste samples of the complex were vacuum- or spray-dried. Ten selected lemon oil flavor volatiles (alpha-pinene, sabinene, beta-pinene, beta-myrcene, limonene, gamma-terpinene, terpinolene, linalool, neral, and geranial) in the complex were analyzed periodically after 1, 2, 5, 10, 15, 20, and 30 min of kneading time. The results indicated that the levels of these volatiles were not significantly different (P > 0.05) irrespective of mixing time or type of the drying (vacuum- or spray-drying) used. An optimum mixing time was found to be 15 min, at which time the maximum encapsulation of lemon oil (97.7 mg/g of beta-cyclodextrin) was obtained in the complex powder.
Resumo:
Essential oils of rice flower, Ozothamnus diosmifolius, were analyzed by capillary gas chromatograplay-mass spectrometry. Flower oil contained beta-pinene (28.4%) and 1,8-cineole (28.2%), while the leaf oil contained a-pinene (26.0%), beta-pinene (11.6%) and 1,8-cineole (22.2%). Both oils had small amounts of spathulenol (4.1% and 5.2%, respectively).
Resumo:
Floral volatiles play a major role in plant-insect communication. We examined the influence of two volatiles, phenylacetaldehyde and a-pinene, on the innate and learnt foraging behaviour of the moth Helicoverpa armigera. In dual-choice wind tunnel tests, adult moths flew upwind towards both volatiles, with a preference for phenylacetaldehyde. When exposure to either of these volatiles was paired with a feeding stimulus (sucrose), all moths preferred the learnt odour in the preference test. This change in preference was not seen when moths were exposed to the odour without a feeding stimulus. The learnt preference for the odour was reduced when moths were left unfed for 24 h before the preference test. We tested whether moths could discriminate between flowers that differed in a single volatile component. Moths were trained to feed on flowers that were odour-enhanced using either phenylacetaldehyde or a-pinene. Choice tests were then carried out in an outdoor flight cage, using flowers enhanced with either volatile. Moths showed a significant preference for the flower type on which they were trained. Moths that were conditioned on flowers that were not odour-enhanced showed no preference for either of the odour-enhanced flower types. The results imply that moths may be discriminating among odour profiles of individual flowers from the same species. We discuss this behaviour within the context of nectar foraging in moths and odour signalling by flowering plants.
Resumo:
An important question in the host-finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC-MS). These comprised three green leaf volatiles [(2E)-hexenal, (3Z)-hexenylacetate and (3Z)-hexenyl-2-methylbutyrate] and five monoterpenes (alpha-pinene,beta-myrcene, limonene, E-beta-ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.
Resumo:
Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved
Resumo:
The three possible disulfide bonded isomers of alpha-conotoxin GI have been selectively synthesised and their structures determined by H-1 NMR spectroscopy. alpha-Conotoxin GI derives from the venom of Conus geographus and is a useful neuropharmacological tool as it selectively binds to the nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel involved in nerve signal transmission. The peptide has the sequence ECCNPACGRHYSC-NH2, and the three disulfide bonded isomers are referred to as GI(2-7;3-13), GI(2-13;3-7) and GI(2-3;7-13). The NMR structure for the native isomer GI(2-7;3-13) is of excellent quality, with a backbone pairwise RMSD of 0.16 Angstrom for a family of 35 structures, and comprises primarily a distorted 3(10),, helix between residues 5 to 11. The two non-native isomers exhibit multiple conformers in solution, with the major populated forms being different in structure both from each other and from the native form. Structure-activity relationships for the native GI(2-7;3-13) as well as the role of the disulfide bonds on folding and stability of the three isomers are examined. It is concluded that the disulfide bonds in alpha-conotoxin GI play a crucial part in determining both the structure and stability of the peptide. A trend for increased conformational heterogeneity was observed in the order of GI(2-7;3-13) < GI(2-13;3-7) < GI(2-3;7-13). It was found that the peptide bond joining Cys2 to Cys3 in GI(2-3;7-13) is predominantly trans, rather than cis as theoretically predicted. These structural data are used to interpret the varying nAChR binding of the non-native forms. A model for the binding of native GI(2-7;3-13) to the mammalian nAChR is proposed, with an alpha-subunit binding face made up of Cys2, Asn4, Pro5, Ala6 and Cys7 and a selectivity face, comprised of Arg9 and His10. These two faces orient the molecule between the alpha and delta subunits of the receptor. The structure of the CCNPAC sequence of the native GI(2-7;3-13) is compared to the structure of the identical sequence from the toxic domain of heat-stable enterotoxins, which forms part of the receptor binding region of the enterotoxins, but which has a different disulfide connectivity. (C) 1998 Academic Press Limited.
Resumo:
We have isolated and characterized ol-conotoxin EpI, a novel sulfated peptide from the venom of the molluscivorous snail, Conus episcopatus, The peptide was classified as an cy-conotoxin based on sequence, disulfide connectivity, and pharmacological target. EpI has ho mology to sequences of previously described cu-conotoxins, particularly PnIA, PnIB, and ImI, However, EpI differs from previously reported conotoxins in that it has a sulfotyrosine residue, identified by amino acid analysis and mass spectrometry, Native EpI was shown to coelute with synthetic EpI, The peptide sequence is consistent with most, but not all, recognized criteria for predicting tyrosine sulfation sites in proteins and peptides, The activities of synthetic EpI and its unsulfated analogue [Tyr(15)]EpI were similar. Both peptides caused competitive inhibition of nicotine action on bovine adrenal chromaffin cells (neuronal nicotinic ACh receptors) but had no effect on the rat phrenic nerve-diaphragm (muscle nicotinic ACh receptors), Both EpI and [Tyr(15)]EpI partly inhibited acetylcholine-evoked currents in isolated parasympathetic neurons of rat intracardiac ganglia, These results indicate that EPI and [Tyr(15)]EpI selectively inhibit alpha 3 beta 2 and alpha 3 beta 4 nicotinic acetylcholine receptors.
Resumo:
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
Crystals of recombinant importin alpha, the nuclear-import receptor, have been obtained at two different pH conditions by vapour diffusion using sodium citrate as precipitant and dithiothreitol as an additive. At pH 4-5, the crystals have the symmetry of the trigonal space group P3(1)21 or P3(2)21 (a = b = 78.0, c = 255.8 Angstrom, gamma = 120 degrees); at pH 6-7, the crystals have the symmetry of the orthorhombic space group P2(1)2(1)2(1) (a = 78.5, b = 89.7, c = 100.5 Angstrom). In both cases, there is probably one molecule of importin ct in the asymmetric unit. At least one of the crystal forms diffracts to a resolution higher than 3 Angstrom using the laboratory X-ray source; the crystals are suitable for crystal structure determination.
Resumo:
The activity of alpha-conotoxin (alpha-CTX) lml, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX lml was a potent inhibitor of the neuronal[ nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 mu M, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. (alpha-CTX lml also inhibited nicotine-evoked Ca-45(2+) uptake but not Ca-45(2+) uptake stimulated by 56 mM Kr. In contrast, alpha-CTX lml had no effect at the neuromuscular junction over the concentration range 1-20 mu M. Bovine chromaffin cells are known to contain the alpha 3 beta 4, alpha 7, and (possibly) alpha 3 beta 4 alpha 5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha 7 nicotinic receptors are not involved. We propose that alpha-CTX lml interacts selectively with the functional (alpha 3 beta 4 or alpha 3 beta 4 alpha 5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.