79 resultados para allelic imprinting
em University of Queensland eSpace - Australia
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Purpose: Cyclophilin 40 (CyP40) is an estrogen receptor-associated protein which appears to modify receptor function. The aim of this study was to determine the extent of allelic loss at the CyP40 locus in a panel of breast carcinomas using a newly characterized microsatellite marker located upstream of the CyP40 gene and then to correlate this with losses at chromosomal sites for cancer-associated genes. Methods: Allelic loss at CyP40 was determined from patients' matched tumor and normal breast tissue using Genescan 672 software analysis of fluorescently labeled, PAGE-separated PCR products incorporating the marker. For each patient, allelic loss at CyP40 was then assessed and compared with losses at markers for various cancer-associated genes. Results: Allelic loss was detected in 30% of breast carcinomas from patients heterozygous for the CyP40 marker. All carcinomas demonstrating allelic loss were grade II or III invasive ductal carcinomas and generally showed multiple losses at other sites near known cancer-associated genes. Conclusions: The polymorphic marker which we characterized was useful in determining allelic loss at the CyP40 locus in breast cancer patients and when applied in these studies in conjunction with various cancer-associated gene markers, suggests that deletions in the region of the CyP40 gene might be a late event in breast tumor progression.
Resumo:
Hypovitaminosis D is a candidate risk-modifying factor for a diverse range of disorders apart from rickets and osteoporosis. Based on epidemiology, and on in vitro and animal experiment, vitamin D has been linked to multiple sclerosis, certain cancers (prostate, breast and colorectal), insulin-dependent diabetes mellitus and schizophrenia. I hypothesise that low pre- and perinatal vitamin D levels imprint on the functional characteristics of various tissues throughout the body, leaving the affected individual at increased risk of developing a range of adult-onset disorders. The hypothesis draws from recent advances in our understanding of the early origin of adult disease and proposes a 'critical window' during which vitamin D levels may have a persisting impact on adult health outcomes. Methods to test the hypothesis are outlined. If correct, the hypothesis has important implications for public health. Careful attention to maternal vitamin D status could translate into diverse improvements in health outcomes for the following generation. (C) 2001 Harcourt Publishers Ltd.
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ^2 = 0.005, P = 0.95, MTHFR χ^2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS.
Resumo:
Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement, which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of reproductive character displacement; there are no unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.
Resumo:
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and M. galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; M. edulis and M. trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.
Resumo:
Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S-3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S-3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S-3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S-3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
Recently, a bi-allelic polymorphism in the glucocorticoid receptor gene (GRL) has been shown to be associated with individuals at high risk of developing hypertension and accumulation of abdominal visceral fat, a known risk factor for cardiovascular disease. The evaluate the role of GRL in essential hypertension and obesity, case-control studies were conducted using 88 hypertensive, 123 normotensive, 150 lean and 94 obese subjects. Genotypes for a highly polymorphic microsatellite marker (D5S207) located within 200 kb of the glucocorticoid receptor gene, were determined by PCR. Allele frequencies between hypertensive and normotensive groups were significantly (P = 0.0005) different whereas no significant differences were observed between lean and obese populations. In conclusion, the results suggest that the glucocorticoid receptor gene or perhaps another gene located in close proximity and in linkage disequilibrium with D5S207, is involved in hypertension development
Resumo:
Arylamine N-acetyltransferase (NAT) was first identified as the inactivator of the anti-tubercular drug isoniazid, The enzyme was shown to catalyse the transfer of an acetyl group from acetyl-CoA to the terminal nitrogen of the hydrazine drug. The rate of inactivation of isoniazid was polymorphically distributed in the population and was one of the first examples of pharmacogenetic variation, NAT was identified recently in Mycobacterium tuberculosis and is a candidate for; modulating the response to isoniazid, Genome sequences have revealed many homologous members of this unique family of enzymes. The first three-dimensional structure of a member of the NAT family identifies a catalytic triad consisting of aspartate, histidine and cysteine proposed to form the activation mechanism. So far, all procaryotic NATs resemble the human enzyme which acetylates isoniazid (NAT2), Human NAT2 is characteristic of drug-metabolizing enzymes: it is found in liver and intestine, In humans and other mammals, there are up to three different isoenzymes. If only one isoenzyme is present, it is like human NAT1. Human NAT1 and its murine equivalent specifically acetylate the folate catabolite p-amino-benzoylglutamate. NAT1 and its murine homologue each have a ubiquitous tissue distribution and are expressed early in development at the blastocyst stage, During murine embryonic development, NAT is expressed in the developing neural tube. The proposed endogenous role of NAT in folate metabolism, and its multi-allelic nature, indicate that its role in development should be assessed further.
Resumo:
Pheochromocytomas are tumors of the adrenal medulla originating in the chromaffin cells derived from the neural crest. Ten % of these tumors are associated with the familial cancer syndromes multiple endocrine neoplasia type 2, von Hippel-Lindau disease (VHL), and rarely, neurofibromatosis type 1, in which germ-line mutations have been identified in RET, VHL, and NF1, respectively. In both the sporadic and familial forms of pheochromocytoma, allelic loss at 1p, 3p, 17p, and 22q has been reported, yet the molecular pathogenesis of these tumors is largely unknown. Allelic loss at chromosome 1p has also been reported in other endocrine tumors, such as medullary thyroid cancer and tumors of the parathyroid gland, as well as in tumors of neural crest origin including neuroblastoma and malignant melanoma, In this study, we performed fine structure mapping of deletions at chromosome 1p in familial and sporadic pheochromocytomas to identify discrete regions likely housing tumor suppressor genes involved in the development of these tumors. Ten microsatellite markers spanning a region of similar to 70 cM (Ipter to 1p34.3) were used to screen 20 pheochromocytomas from 19 unrelated patients for loss of heterozygosity (LOH). LOH was detected at five or more loci in 8 of 13 (61%)sporadic samples and at five or more loci in four of five (80%) tumor samples from patients with multiple endocrine neoplasia type 2. No LOH at 1p was detected in pheochromocytomas from two VHL patients, Analysis of the combined sporadic and familial tumor data suggested three possible regions of common somatic loss, designated as PCI (D1S243 to D1S244), PC2 (D1S228 to D1S507), and PC3 (D1S507 toward the centromere). We propose that chromosome Ip may be the site of at least three putative tumor suppressor loci involved in the tumorigenesis of pheochromocytomas. At least one of these loci, PC2 spanning an interval of <3.8 cM, is Likely to have a broader role in the development of endocrine malignancies.
Resumo:
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.