15 resultados para Water and architecture

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ingress of water and Kokubo simulated body fluid (SBF) into poly (2-hydroxyethyl methacrylate) (PHEMA), and its co-polymers with tetrahydrofurduryl methacrylate (THFMA), loaded with either one of two model drugs, vitamin 1312 or aspirin, was studied by mass uptake over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 wt% or 10 wt% of the drugs. From DSC studies it was observed that vitamin B-12 behaved as a physical cross-linker restricting chain segmental mobility, and so had a small anti-plasticisation effect on PHEMA and the co-polymers rich in HEMA, but almost no effect on the T-g of co-polymers rich in THFMA. On the other hand, aspirin exhibited a plasticising effect on PHEMA and the copolymers. All of the polymers were found to absorb water and SBF according to a Fickian diffusion mechanism. The polymers were all found to swell to a greater extent in SBF than in water, which was attributed to the presence of Tris buffer in the SBF. The sorptions of the two penetrants were found to follow Fickian kinetics in all cases and the diffusion coefficients at 310 K for SBF were found to be smaller than those for water, except for the polymers containing aspirin where the diffusion coefficients were higher than for the other systems. For example, for sorption into PHEMA the diffusion coefficient for water was 1.41 X 10(-11) m(2)/s and for SBF was 0.79 x 10-11 m(2)/s, but in the presence of 5 wt% aspirin the corresponding values were 1.27 x 10(-1)1 m(2)/s and 1.25 x 10(-11) m(2)/s, respectively. The corresponding values for PHEMA loaded with 5 wt% B-12 were 1.25 x 10(-11) m(2)/s and 0.74 x 10(-11) m(2)/s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model drug release study on the ingress of water and Kokubo simulated body fluid (SBF) into poly(2-hydroxyethyl methacrylate) (THFMA) and its copolymers with tetrahydrofurfuryl methacrylate (THFMA) loaded with vitamin B-12 was undertaken over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 or 10 wt-% of the drug. The drug release from the polymers was found to follow a Fickian diffusion mechanism in the early stages of the drug release, with higher normalized release rates at higher temperatures and higher drug loadings. The normalized release rates were also found to be higher for the SBF solution than for water. The copolymer composition was found to have a significant effect on the rate of release of the drug, with the rate falling rapidly between HEMA mole fractions of 1.0 and 0.8, but for lower mole fractions of HEMA the normalized release rate decreased more slowly. This behaviour followed the trend found for the changes in the equilibrium penetrant contents for the copolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shoot biomass and lignotuber size of seedlings of three eucalypt species, Eucalyptus acmenoides Schauer, E. siderophloia Benth. and Corymbia variegata [syn. E. maculata (F. Muell.)K. D. Hill and L. A. S. Johnson], were measured for glasshouse-grown seedlings established under two water and nutrient regimes. Seedlings were subjected to shoot removal (clipping) at ages from 9 to 19 weeks, and transferred to the high water treatment for a further 8 weeks to assess shoot emergence from lignotubers. Seedling shoot biomass was greater in both the high than the low nutrient and water treatments, but lignotuber diameter was not affected significantly. C. variegata seedlings had the largest lignotuber diameters, followed by E. siderophloia and E. acmenoides, respectively. Although growth of shoots was influenced by nutrient availability, results suggest that species differences in the growth of lignotubers was less affected. It is suggested that lignotuber growth was strongly influenced by genotype. More than 70% of C. variegata seedlings clipped at 9 weeks sprouted, compared with only 5 and 10% of seedlings of E. siderophloia and E. acmenoides, respectively. All C. variegata seedlings sprouted after being clipped at 19 weeks, but < 80% of E. siderophloia and < 60% of E. acmenoides sprouted when clipped at the same age. It was concluded that seedlings forming part of the regeneration stratum in dry sclerophyll forests need to be protected from damage for at least 4 months (for C. variegata) or at least 6 months (for E. siderophloia and E. acmenoides) if they are to survive by sprouting from lignotubers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (> 80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5)cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR, Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador: