62 resultados para WAXY MAIZE STARCH
em University of Queensland eSpace - Australia
Resumo:
The role of non-carbohydrate surface components of granular starch in determining gelatinisation behaviour has been tested by treatment of native starches with a range of extractants. Resulting washed starches were analysed for (bio)chemical, calorimetric and theological properties. Sodium dodecyl sulphate (SDS) was the most efficient extractant tested, and resulted in major changes to the subsequent theological properties of wheat and maize starches but not other starches. Three classes of starch granule swelling behaviour are identified: (i) rapid swelling (e.g. waxy maize, potato), (ii) slow swelling that can be converted to rapid swelling by extraction of surface proteins and lipids (e.g. wheat, maize), and (iii) limited swelling not affected by protein/lipid extraction (e.g. high amylose maize/potato). Comparison of a range of extractants suggests that all of protein, lipid and amylose are involved in restriction of swelling for wheat or maize starches. Treatment of starches with SDS leads to a residue at comparable (low) levels of SDS for all starches. C-13 NMR analysis shows that this SDS is present as a glucan inclusion complex, even for waxy maize starch. We infer that under the conditions used, glucan inclusion complexation of SDS is equally likely with amylopectin as with amylose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Sugars affect the gelatinization of starch, with the effect varying significantly between sugars. Since many food products contain a mixture of sugar sources, it is important to understand how their mixtures affect starch gelatinization. In a Rapid Visco Analyser study of maize starch gelatinization, changing proportions in binary mixtures of refined sugars saw a largely proportionate change in starch gelatinization properties. However, binary mixture of pure sugars and honey, or a model honey system (the main sugars in honey) and honey responded differently. Generally, replacing 25% or 50% of the refined sugar or model honey system with honey gave a large change in starch gelatinization properties, while further increases in honey level had little further effect. Differences between honey and buffered model honey system (either gluconic acid, or a mixture of citric acid and di-sodium phosphate) showed the sensitivity of starch gelatinization to the composition of the nonsaccharide component. (c) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dynamic rheological behaviour of starch-honey systems was studied using a strain-controlled rheometer. A dynamic temperature (30-130 degreesC) ramp test was used at 10 rad s(-1) frequency, 1% strain, 2 degreesC min(-1) ramp rate, 25 mm parallel plate, and 1.5 min gap, using Wheaten cornflour(TM) and five honeys to generate 25 formulations (0.34-0.80 g water/g dry starch). G', G, and eta* increased upon gelatinisation, and they reduced as the honey content was increased. For all the formulations, G' was higher than G, and tan 6 was generally less than 1.0. Key gelatinisation characterising temperatures (onset, peak and end) ranged from 96.0 to 122.3 degreesC, but did not vary much (CV < 5%) for each honey irrespective of the concentration. The influence of water, fructose and glucose, singly and in combination, on gelatinisation indices (temperature and rheological parameters) was investigated. An exponential equation was employed to describe the relationship, and relevant parameters were obtained. The consequences of the observations in the study are discussed particularly as they relate to extrusion of such systems, and possible interactions between fructose and glucose in the starch-honey systems. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The use of modulated temperature differential scanning calorimetry (MTDSC) has provided further insight into the gelatinisation process since it allows the detection of glass transition during gelatinisation process. It was found in this work that the glass transition overlapped with the gelatinisation peak temperature for all maize starch formulations studied. Systematic investigation on maize starch gelatinisation over a range of water-glycerol concentrations with MTDSC revealed that the addition of glycerol increased the gelatinisation onset temperature with an extent that depended on the water content in the system. Furthermore, the addition of glycerol promoted starch gelatinisation at low water content (0.4 g water/g dry starch) and the enthalpy of gelatinisation varied with glycerol concentration (0.73-19.61 J/g dry starch) depending on the water content and starch type. The validities of published gelatinisation models were explored. These models failed to explain the glass transition phenomena observed during the course of gelatinisation and failed to describe the gelatinisation behaviour observed over the water-glycerol concentrations range investigated. A hypothesis for the mechanisms involved during gelatinisation was proposed based on the side chain liquid crystalline polymer model for starch structure and the concept that the order-disorder transition in starch requires that the hydrogen bonds (the major structural element in the granule packing) to be broken before the collapse of order (helix-coil transition) can take place. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch-water-glycerol mixtures was determined within a temperature range of 40-120degreesC. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0 - 85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.
Resumo:
Rhizopus arrhizus, strain DAR 36017, produced L(+)-lactic acid in a simultaneous saccharification and fermentation process using starch waste effluents. Lactic acid at 19.5 - 44.3 g l(-1) with a yield of 0.85 - 0.96 g g(-1) was produced in 40 h using 20 - 60 g starch l(-1). Supplementation of nitrogen source may be unnecessary if potato or corn starch waste effluent was used as a production medium.
Resumo:
In the extrusion manufacture of starch-based thermoplastics, such as biodegradable packaging materials, glycerol is an effective additive as a plasticiser, that is, to diminish the brittle nature of the product and provide the desired extent of flexibility. However, the addition of glycerol may also affect the gelatinisation behaviour of the starch-water mixture, and hence the required processing conditions for producing a homogeneously gelatinised starch-based material. The effect of glycerol on the gelatinisation of wheat starch was studied using differential scanning calorimetry (DSC). Mixtures of starch, water and glycerol were investigated with a water content ranging from 12 - 40% and a glycerol concentration up to 75%. Dependent on composition, the enthalpy of gelatinisation ranged from 1.7 - 12.6 J/g (on a dry starch basis), while the onset and peak temperatures varied from 54 to 86 degreesC and 60 to 90 degreesC, respectively. As expected, water acted as a plasticiser in that the onset temperature for gelatinisation (TO) decreased with increasing moisture content. Glycerol, however, increased To. It is shown that the T-0 of starch-glycerol-water mixtures may be predicted on the basis of the effective moisture content of the starch fraction of these mixtures resulting from the relative speed of moisture absorption by glycerol and starch, respectively. Moisture sorption kinetics of wheat starch and glycerol in 100% relative humidity were determined and used to predict the preferential water absorption by glycerol in starch-glycerol-water mixtures and hence the resulting T-0 of the system.
Resumo:
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.
Resumo:
Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30degreesC was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%similar to85.5% associated with 1.5similar to2.0 g/L fungal biomass produced in 36 h of fermentation.
Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry
Resumo:
Differential scanning calorimetry was used to investigate the effect of mixtures of glucose and fructose, and five types of honeys on starch gelatinisation. At a 1:1 starch:water ratio, glucose generally increased the enthalpy (DeltaH(gel)) and temperatures (T-onset, T-peak and T-end) of gelatinisation more than fructose. Upon mixing, DeltaH(gel) of the low-temperature endotherm decreased in comparison to the sole sugars, but was fairly constant (7.7 +/- 0.33 J/g dry starch). DeltaH(gel) of the high-temperature endotherm increased with the fructose content. For both endotherms, the gelatinisation temperatures were unchanged (CV less than or equal to 3%) for the mixtures. With the honeys (moisture, 14.9-18.0%; fructose, 37.2-44.0%; glucose, 28.3-31.9%) added at 1.1-4.4 g per g dry starch, the enthalpy and temperatures of gelatinisation did not vary significantly (CV less than or equal to 6%). Typical thermograms are presented, and the results are interpreted in the light of the various proposed mechanisms for starch gelatinisation in sugar-water systems, total sugar content and possible sugar-sugar interactions. The thermograms were broader in the presence of the sugars and honeys, and a biphasic character was consistently exhibited. The application of an exponential equation to the gelatinisation temperatures of the starch-honey mixtures revealed an opposing influence of fructose and glucose during gelatinisation. The mechanism of starch gelatinisation may be better understood if techniques could be perfected to quantify breakage and formation of hydrogen bonds in the starch granules, and suggested techniques are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87-0.97 g/g starch associated with 1.5-2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.
Resumo:
The biochemical kinetic of simultaneous saccharification and fermentation (SSF) for lactic acid production by fungal species of Rhizopus arrhizus 36017 and Rhizopus oryzae 2062 was studied with respect to growth pH, temperature and substrate. Both R. arrhizus 36017 and R. oryzae 2062 had a capacity to carry out a single stage SSF process for lactic acid production from potato starch wastewater. The kinetic characteristics, termed as starch hydrolysis, accumulation of reducing sugars, lactic acid production and fungal biomass formation, were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.85-0.92 g/g associated with 1.5-3.5 g/l fungal biomass produced in 36-48 h fermentation. R. arrhizus 36017 had a higher capacity to produce lactic acid, while R. oryzae 2062 produced more fungal biomass under similar conditions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Leaf area growth and nitrogen concentration per unit leaf area, N-a (g m(-2) N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84-6.0 g N pot(-1)) and five rates (0.5-6.0 g pot(-1)) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, P a,, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (N-a or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between P-max and N-a. The results confirm the 'maize strategy': leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the 'potato strategy' can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the 'maize strategy' for adaptation to N limitation. (c) 2004 Elsevier B.V. All rights reserved.