41 resultados para Varejo on-line
em University of Queensland eSpace - Australia
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.
Resumo:
The personal computer revolution has resulted in the widespread availability of low-cost image analysis hardware. At the same time, new graphic file formats have made it possible to handle and display images at resolutions beyond the capability of the human eye. Consequently, there has been a significant research effort in recent years aimed at making use of these hardware and software technologies for flotation plant monitoring. Computer-based vision technology is now moving out of the research laboratory and into the plant to become a useful means of monitoring and controlling flotation performance at the cell level. This paper discusses the metallurgical parameters that influence surface froth appearance and examines the progress that has been made in image analysis of flotation froths. The texture spectrum and pixel tracing techniques developed at the Julius Kruttschnitt Mineral Research Centre are described in detail. The commercial implementation, JKFrothCam, is one of a number of froth image analysis systems now reaching maturity. In plants where it is installed, JKFrothCam has shown a number of performance benefits. Flotation runs more consistently, meeting product specifications while maintaining high recoveries. The system has also shown secondary benefits in that reagent costs have been significantly reduced as a result of improved flotation control. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The processing of lexical ambiguity in context was investigated in eight individuals with schizophrenia and a matched control group. Participants made speeded lexical decisions on the third word in auditory word triplets representing concordant (coin-bank-money), discordant (river-bank-money). neutral (day-bank-money), and unrelated (river-day-money) conditions. When the interstimulus interval (ISI) between the words was 100 ms. individuals with schizophrenia demonstrated priming consistent with selective. context-based lexical activation. At 1250 ms ISI a pattern of nonselective meaning facilitation was obtained. These results suggest an attentional breakdown in the sustained inhibition of meanings on the basis of lexical context. (C) 2002 Elsevier Science (USA).
Resumo:
This paper examines the use of on-line discussion as a medium for learning in a pre-service teacher education program. As part of an Education Studies course student teachers engaged in a discussion of issues related to technology and equity in schools. The design of the task and the subsequent analysis of the on-line text were part of a research project investigating whether and how communications technology can be used to integrate and extend the learning of teacher education students. The main argument developed in the paper is that through the on-line activity distinctive sets of writing practices were created. These practices enabled students to make connections between the often disparate parts of teacher education programs-theory and practice, campus and school, research and experience. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD