8 resultados para Vérification de code intermédiaire
em University of Queensland eSpace - Australia
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
A survey of hybridization in proper names and commercial signs. CODE-SWITCHING is commonly seen as more typical of the spoken language. But there are some areas of language use, including business names (e.g. restaurants), where foreign proper names, common nouns and sometimes whole phrases are imported into the written language too. These constitute a more stable variety of code-switching than the spontaneous and more unpredictable code-switching in the spoken language.
Resumo:
Let g be the genus of the Hermitian function field H/F(q)2 and let C-L(D,mQ(infinity)) be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the dimension/length profile (DLP) lower bound on the state complexity of C-L(D,mQ(infinity)). Here we determine when this lower bound is tight and when it is not. For m less than or equal to n-2/2 or m greater than or equal to n-2/2 + 2g, the DLP lower bounds reach Wolf's upper bound on state complexity and thus are trivially tight. We begin by showing that for about half of the remaining values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute state complexity of C-L(D,mQ(infinity)), which improves the DLP lower bound. Next we give a good coordinate order for C-L(D,mQ(infinity)). With this good order, the state complexity of C-L(D,mQ(infinity)) achieves its DLP bound (whenever this is possible). This coordinate order also provides an upper bound on the absolute state complexity of C-L(D,mQ(infinity)) (for those values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity do not meet for some of these values of m, and this leaves open the question whether our coordinate order is best possible in these cases. A straightforward application of these results is that if C-L(D,mQ(infinity)) is self-dual, then its state complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n /2 - q(2)/4, and, in particular, so does its absolute state complexity.