24 resultados para Turkey hunting
em University of Queensland eSpace - Australia
Resumo:
Analysis of charred plant macro-remains, including wood charcoals, cereals, seeds, tubers and fruits from the Neolithic site of Catalhoyuk has indicated complex patterns of plant resource use and exploitation in the Konya plain during the early Holocene. Evidence presented in this paper shows that settlement location was not dictated by proximity to high quality arable land and direct access to arboreal resources (firewood, timber, fruit producing species). A summary of the patterns observed in sample composition and species representation is outlined here together with preliminary interpretations of these results within their broader regional context.
Resumo:
A history of agricultural production is proposed for Neolithic Catalhoyuk East, central Turkey, using archaeobotanical, environmental, population and settlement studies. In the aceramic early phase of site occupation, intensive strategies developed as changes in population and environment caused stress on food supplies produced within a limited territory. Food exchange may have been part of the social means by which Catalhoyuk and nearby contemporary settlements amalgamated into the single site of the main occupation phase. Population change, inherited territories and continuing environmental impact led to the development of an extensive system of agriculture using widely dispersed dry soils, with an intensive regime applied to nearby alluvial soils. Social tensions caused by the evolution of this system contributed to the fissioning of the site by the Chalcolithic.
Resumo:
This study presents the first attempt to constrain the evolution of the North Anatolian Fault Zone (NAFZ) by age dating and isotope tracing of clay minerals formed during near-surface faulting. Extensive illitic clay mineralisation occurred along the NAFZ related to hydrothermal alteration of the fault gouges and pseudotachylytes. Samples representing the pre-fault protoliths outside the fault zone do not contain authigenic illitic clay minerals indicating that hydrothermal processes were confined to the areas within the fault zone. K-Ar age data indicate that the hydrothermal system and the associated illite authigenesis initiated at similar to 57 Ma. This process is interpreted to reflect the onset of significant strike-slip or transtensional faulting immediately after the continental collision related to the closure of the Neotethys Ocean. Following the initiation of the fault movements in the latest Paleocene-Early Eocene, displacements along the NAFZ have continued, with probably intensified fault activities at similar to 26 Ma and later than similar to 8 Ma. Oxygen isotope compositions of the illitic clays from different locations along the NAFZ are similar, with narrow ranges in delta O-18 values indicating clay precipitation from fluids with similar oxygen isotope compositions and crystallisation temperatures. The delta O-18 and delta D values of the calculated fluid isotopic composition (delta O-18=5.9 parts per thousand to 11.2 parts per thousand, delta D=-59 parts per thousand to -73 parts per thousand) are consistent with metamorphic and magmatic origin of fluids mobilised during active tectonism. The interpretation of the fluid flow history of the NAFZ is in agreement with that reported previously for some well-known large-scale high-angle fault zones, which similarly developed along collisional-type orogenic belts and are commonly associated with significant mesothermal ore mineralisation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.
Resumo:
Animals that go on hunting expeditions face the problem of finding the way home at the end of the day. A group of hunting spiders has now been added to the list of animals that use the celestial pattern of polarized light as a compass for navigation. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Regional and national surveys provide a broadscale description of the koala's present distribution in Australia. A detailed understanding of its distribution is precluded, however, by past and continuing land clearing across large parts of the koala's range. Koala population density increased in some regions during the late 1800s and then declined dramatically in the early 1900s. The decline was associated with habitat loss, hunting, disease, fire, and drought. Declines are continuing in Queensland and New South Wales. In contrast, dense koala populations in habitat isolates in Victoria and South Australia are managed to reduce population size and browse damage. Current understanding of koala distribution and abundance suggests that the species does not meet Australian criteria as endangered or vulnerable fauna. Its conservation status needs to be reviewed, however, in light of the extensive land clearing in New South Wales and Queensland since the last (1980s) broadscale surveys. Consequently, we recommend that broadacre clearing by curtailed in New South Wales and Queensland and that regular, comprehensive, standardized, national koala surveys be undertaken. Given the fragmentation of koala habitat and regional differences in the status of the koala, we recommended that studies on regional variation in the koala be intensified and that koala ecology in fragmented and naturally restricted habitats be developed. More generally, the National Koala Conservation Strategy should be implemented.
Resumo:
Members of the billfish family are highly visual predatory teleosts inhabiting the open ocean. Little is known about their visual abilities in detail, but past studies have indicated that these fishes were:ere likely to be monochromats. This study however, presents evidence of two anatomically distinct cone types in billfish. The cells are arranged in a regular mosaic pattern of single and twin cones as in many fishes, and this arrangement suggests that the different cone types also show different spectral sensitivity, which is the basis for colour vision. First measurements using microspectrophotometry (MSP) revealed a peak absorption of the rod pigment at 484 nm, indicating that MSP, despite technical difficulties, will be a decisive tool in proving colour vision in these offshore fishes. When hunting, billfish such as the sailfish flash bright blue bars on their sides. This colour reflects largely in ultraviolet (UV) light at 350 nm as revealed by spectrophotometric measurements. Billfish lenses block light of wavelengths below 400 nm, presumably rendering the animal blind to the UV component of its own body colour. Interestingly at least two prey species of billfish have lenses transmitting light in the UV waveband and are therefore likely to perceive a large fraction of the UV peak found in the blue bar of the sailfish. The possible biological significance of this finding is discussed.