170 resultados para Traditional ecological knowledge
em University of Queensland eSpace - Australia
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
Given escalating concern worldwide about the loss of biodiversity, and given biodiversity's centrality to quality of life, it is imperative that current ecological knowledge fully informs societal decision making. Over the past two decades, ecological science has undergone many significant shifts in emphasis and perspective, which have important implications for how we manage ecosystems and species. In particular, a shift has occurred from the equilibrium paradigm to one that recognizes the dynamic, non-equilibrium nature of ecosystems. Revised thinking about the spatial and temporal dynamics of ecological systems has important implications for management. Thus, it is of growing concern to ecologists and others that these recent developments have not been translated into information useful to managers and policy makers. Many conservation policies and plans are still based on equilibrium assumptions. A fundamental difficulty with integrating current ecological thinking into biodiversity policy and management planning is that field observations have yet to provide compelling evidence for many of the relationships suggested by non-equilibrium ecology. Yet despite this scientific uncertainty, management and policy decisions must still be made. This paper was motivated by the need for considered scientific debate on the significance of current ideas in theoretical ecology for biodiversity conservation. This paper aims to provide a platform for such discussion by presenting a critical synthesis of recent ecological literature that (1) identifies core issues in ecological theory, and (2) explores the implications of current ecological thinking for biodiversity conservation.
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.
Waiting for the tide, tuning in the world: Traditional knowledge, environmental ethics and community
Resumo:
This paper challenges current practices in the use of digital media to communicate Australian Aboriginal knowledge practices in a learning context. It proposes that any digital representation of Aboriginal knowledge practices needs to examine the epistemology and ontology of these practices in order to design digital environments that effectively support and enable existing Aboriginal knowledge practices in the real world. Central to this is the essential task of any new digital representation of Aboriginal knowledge to resolve the conflict between database and narrative views of knowledge (L. Manovich, 2001). This is in order to provide a tool that complements rather than supplants direct experience of traditional knowledge practices (V. Hart, 2001). This paper concludes by reporting on the recent development of an advanced learning technology that addresses this.
Resumo:
Lamington National Park in Queensland, Australia is noted for its rainforest and is part of the World Heritage listed property but prior to this work, no systematic study has been done of the importance of birds to its visitors. This study is based on data from survey forms handed to visitors at an important site in the park and completed by visitors following their visit. It yielded 622 useable responses. These enabled us to establish the comparative importance of birds as an attraction to this site for this sample of visitors. Furthermore, logit regression is used to target analysis and to identify factors that increase the likelihood of a visitor saying that birds are an important attraction. In addition, the relative importance to visitors of various attributes of birds at this site is established. These attributes include hearing birds, diversity of birds, seeing lots of birds, presence of rare birds, presence of brightly coloured birds and physical contact with birds. Logit regression analysis is used to isolate independent variables that increase or decrease the likelihood that visitors find diversity of birds, brightly coloured birds or physical contact with birds at this site to be important. For example, factors such as the level of education of visitors, their gender, knowledge of birds and conservation attitudes and statistically significant influences. As a result of the analysis potential conflicts between different types of park visitors in relation to human interaction with birds are identified. Some potential ecological implications of human interactions with birds are modelled and discussed, and their economic conservation and biodiversity consequences are considered
Resumo:
Lyngbya majuscula is a benthic filamentous marine cyanobacterium, which in recent years appears to have been increasing in frequency and size of blooms in Moreton Bay, Queensland. It has a worldwide distribution throughout the tropics and subtropics in water to 30m. It has been found to contain a variety of chemicals that exert a range of biological effects, including skin, eye and respiratory irritation. The toxins lyngbyatoxin A and debromoaplysiatoxin appear to give the most widely witnessed biological effects in relation to humans, and experiments involving these two toxins show the formation of acute dermal lesions. Studies into the epidemiology of the dermatitic, respiratory and eye effects of the toxins of this organism are reviewed and show that Lyngbya induced dermatitis has occurred in a number of locations. The effects of aerosolised Lyngbya in relation to health outcomes were also reported. Differential effects of bathing behaviour after Lyngbya exposure were examined in relation to the severity of health outcomes. The potential for Lyngbya to exhibit differential toxicologies due to the presence of varying proportions of a range of toxins is also examined. This paper reviews the present state of knowledge on the effects of Lyngbya majuscula on human health, ecosystems and human populations during a toxic cyanobacterial bloom. The potential exists for toxins from Lyngbya majuscula affecting ecological health and in particular marine reptiles. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The focus of the discipline of neuropsychology is shifting towards a greater emphasis on understanding the relationship between assessment results and performance of everyday tasks (ecological validity). To date, the literature has highlighted the importance of this concept in the assessment of patients with brain injury or disease (e.g. in rehabilitation and forensic settings). This paper presents the argument that there is another important area in which the ecological validity of neuropsychological assessments should be considered: in clinical outcomes studies using neurologically intact participants. For example, determining the extent to which a medical procedure or intervention affects performance of everyday cognitive tasks can provide useful information that can potentially guide decision-making regarding treatment options. It is argued that tests designed with ecological validity in mind (the verisimilitude approach), as opposed to traditional tests, may be most effective at predicting everyday functioning. Explanations are proposed as to why researchers may be reluctant to use tests with verisimilitude in favor of more traditional measures. (c) 2006 National Academy of Neuropsychology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ecologists and economists both use models to help develop strategies for biodiversity management. The practical use of disciplinary models, however, can be limited because ecological models tend not to address the socioeconomic dimension of biodiversity management, whereas economic models tend to neglect the ecological dimension. Given these shortcomings of disciplinary models, there is a necessity to combine ecological and economic knowledge into ecological-economic models. It is insufficient if scientists work separately in their own disciplines and combine their knowledge only when it comes to formulating management recommendations. Such an approach does not capture feedback loops between the ecological and the socioeconomic systems. Furthermore, each discipline poses the management problem in its own way and comes up with its own most appropriate solution. These disciplinary solutions, however are likely to be so different that a combined solution considering aspects of both disciplines cannot be found. Preconditions for a successful model-based integration of ecology and economics include (1) an in-depth knowledge of the two disciplines, (2) the adequate identification and framing of the problem to be investigated, and (3) a common understanding between economists and ecologists of modeling and scale. To further advance ecological-economic modeling the development of common benchmarks, quality controls, and refereeing standards for ecological-economic models is desirable.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.