17 resultados para Thermo-optic coefficients

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stratum corneum (SC) desorption experiments have yielded higher calculated steady-state fluxes than those obtained by epidermal penetration studies. A possible explanation of this result is a variable diffusion or partition coefficient across the SC. We therefore developed the diffusion model for percutaneous penetration and desorption to study the effects of either a variable diffusion coefficient or variable partition coefficient in the SC over the diffusion path length. Steady-state flux, lag time, and mean desorption time were obtained from Laplace domain solutions. Numerical inversion of the Laplace domain solutions was used for simulations of solute concentration-distance and amount penetrated (desorbed)-time profiles. Diffusion and partition coefficients heterogeneity were examined using six different models. The effect of heterogeneity on predicted flux from desorption studies was compared with that obtained in permeation studies. Partition coefficient heterogeneity had a more profound effect on predicted fluxes than diffusion coefficient heterogeneity. Concentration-distance profiles show even larger dependence on heterogeneity, which is consistent with experimental tape-stripping data reported for clobetasol propionate and other solutes. The clobetasol propionate tape-stripping data were most consistent with the partition coefficient decreasing exponentially for half the SC and then becoming a constant for the remaining SC. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of two small ossified optic capsules from mid-Palaeozoic placoderm fishes has been revealed in fine detail, by the use of Xray microtomography analysis and 3D visualisation software. These two specimens are 410 million-year-old; they were collected from an Early Devonian (Lochkovian) limestone in central New South Wales, and are the oldest known optic capsules from jawed fishes. The capsules show attachment areas for seven extrinsic eye muscles, rather than the six until recently deemed universal for gnathostomes. The analysis also revealed structures within the ossified cartilage which covered the medial surface of the eyeball, including nerve tracts, vascular canals, and possibly a choroid rete mirabile. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Published birthweight references in Australia do not fully take into account constitutional factors that influence birthweight and therefore may not provide an accurate reference to identify the infant with abnormal growth. Furthermore, studies in other regions that have derived adjusted (customised) birthweight references have applied untested assumptions in the statistical modelling. Aims: To validate the customised birthweight model and to produce a reference set of coefficients for estimating a customised birthweight that may be useful for maternity care in Australia and for future research. Methods: De-identified data were extracted from the clinical database for all births at the Mater Mother's Hospital, Brisbane, Australia, between January 1997 and June 2005. Births with missing data for the variables under study were excluded. In addition the following were excluded: multiple pregnancies, births less than 37 completed week's gestation, stillbirths, and major congenital abnormalities. Multivariate analysis was undertaken. A double cross-validation procedure was used to validate the model. Results: The study of 42 206 births demonstrated that, for statistical purposes, birthweight is normally distributed. Coefficients for the derivation of customised birthweight in an Australian population were developed and the statistical model is demonstrably robust. Conclusions: This study provides empirical data as to the robustness of the model to determine customised birthweight. Further research is required to define where normal physiology ends and pathology begins, and which segments of the population should be included in the construction of a customised birthweight standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ammonium sulphate concentration on the osmotic second virial coefficient (B-AA/M-A) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, B-AA/M-A assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to B-AA/M-A but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B-22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitatively predicting mass transport rates for chemical mixtures in porous materials is important in applications of materials such as adsorbents, membranes, and catalysts. Because directly assessing mixture transport experimentally is challenging, theoretical models that can predict mixture diffusion coefficients using Only single-component information would have many uses. One such model was proposed by Skoulidas, Sholl, and Krishna (Langmuir, 2003, 19, 7977), and applications of this model to a variety of chemical mixtures in nanoporous materials have yielded promising results. In this paper, the accuracy of this model for predicting mixture diffusion coefficients in materials that exhibit a heterogeneous distribution of local binding energies is examined. To examine this issue, single-component and binary mixture diffusion coefficients are computed using kinetic Monte Carlo for a two-dimensional lattice model over a wide range of lattice occupancies and compositions. The approach suggested by Skoulidas, Sholl, and Krishna is found to be accurate in situations where the spatial distribution of binding site energies is relatively homogeneous, but is considerably less accurate for strongly heterogeneous energy distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian lungfish Neoceratodus forsteri may be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% or the total population are significantly larger (> 400 mu m(2)) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6-1.9 cycles deg(-1), n = 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.