10 resultados para Task performance and analysis
em University of Queensland eSpace - Australia
Resumo:
This research adopts a resource allocation theoretical framework to generate predictions regarding the relationship between self-efficacy and task performance from two levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at repeated intervals. The authors used multilevel analysis to demonstrate dynamic main effects, dynamic mediation and dynamic moderation. As predicted, the positive effects of overall task specific self-efficacy and general self-efficacy on task performance strengthened throughout practice. In line with these dynamic main effects, the effect of general self-efficacy was mediated by overall task specific self-efficacy; however this pattern emerged over time. Finally, changes in task specific self-efficacy were negatively associated with changes in performance at the within-person level; however this effect only emerged towards the end of practice for individuals with high levels of overall task specific self-efficacy. These novel findings emphasise the importance of conceptualising self-efficacy within a multi-level and multi-specificity framework and make a significant contribution to understanding the way this construct relates to task performance.
Resumo:
Achievement goal orientation represents an individual's general approach to an achievement situation, and has important implications for how individuals react to novel, challenging tasks. However, theorists such as Yeo and Neal (2004) have suggested that the effects of goal orientation may emerge over time. Bell and Kozlowski (2002) have further argued that these effects may be moderated by individual ability. The current study tested the dynamic effects of a new 2x2 model of goal orientation (mastery/performance x approach/avoidance) on performance on a simulated air traffic control (ATC) task, as moderated by dynamic spatial ability. One hundred and one first-year participants completed a self-report goal orientation measure and computerbased dynamic spatial ability test and performed 30 trials of an ATC task. Hypotheses were tested using a two-level hierarchical linear model. Mastery-approach orientation was positively related to task performance, although no interaction with ability was observed. Performance-avoidance orientation was negatively related to task performance; this association was weaker at high levels of ability. Theoretical and practical implications will be discussed.
Resumo:
The present research investigated the effect of performance feedback on the modulation of the acoustic startle reflex in a Go/NoGo reaction time task. Experiment 1 (n = 120) crossed warning stimulus modality (acoustic, visual, and tactile) with the provision of feedback in a between subject design. Provision of performance feedback increased the number of errors committed and reduced reaction time, but did not affect blink modulation significantly. Attentional blink latency and magnitude modulation was larger during acoustic than during visual and larger during visual than during tactile warning stimuli. In comparison to control blinks, latency shortening was significant in all modality conditions whereas magnitude facilitation was not significant during tactile warning stimuli. Experiment 2 (n = 80) employed visual warning stimuli only and crossed the provision of feedback with task difficulty. Feedback and difficulty affected accuracy and reaction time. Whereas blink latency shortening was not affected, blink magnitude modulation was smallest in the Easy/No Feedback and the Difficult/Feedback conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).
The effects of task complexity and practice on dual-task interference in visuospatial working memory
Resumo:
Although the n-back task has been widely applied to neuroimagery investigations of working memory (WM), the role of practice effects on behavioural performance of this task has not yet been investigated. The current study aimed to investigate the effects of task complexity and familiarity on the n-back task. Seventy-seven participants (39 male, 38 female) completed a visuospatial n-back task four times, twice in two testing sessions separated by a week. Participants were required to remember either the first, second or third (n-back) most recent letter positions in a continuous sequence and to indicate whether the current item matched or did not match the remembered position. A control task, with no working memory requirements required participants to match to a predetermined stimulus position. In both testing sessions, reaction time (RT) and error rate increased with increasing WM load. An exponential slope for RTs in the first session indicated dual-task interference at the 3-back level. However, a linear slope in the second session indicated a reduction of dual-task interference. Attenuation of interference in the second session suggested a reduction in executive demands of the task with practice. This suggested that practice effects occur within the n-back ask and need to be controlled for in future neuroimagery research using the task.
Resumo:
The enhanced biological phosphorus removal (EBPR) process is regularly used for the treatment of wastewater, but suffers from erratic performance. Successful EBPR relies on the growth of bacteria called polyphosphate-accumulating organisms (PAOs), which store phosphorus intracellularly as polyphosphate, thus removing it from wastewater. Metabolic models have been proposed which describe the measured chemical transformations, however genetic evidence is lacking to confirm these hypotheses. The aim of this research was to generate a metagenomic library from biomass enriched in PAOs as determined by phenotypic data and fluorescence in situ hybridisation (FISH) using probes specific for the only described PAO to date, Candidatus Accumulibacter phosphatis. DNA extraction methods were optimised and two fosmid libraries were constructed which contained 93 million base pairs of metagenomic data. Initial screening of the library for 16S rRNA genes revealed fosmids originating from a range of non-pure-cultured wastewater bacteria. The metagenomic libraries constructed will provide the ability to link phylogenetic and metabolic data for bacteria involved in nutrient removal from wastewater. Keywords DNA extraction; EBPR; metagenomic library; 16S rRNA gene.