38 resultados para Target surfaces
em University of Queensland eSpace - Australia
Resumo:
A method is presented for calculating the winding patterns required to design independent zonal and tesseral biplanar shim coils for magnetic resonance imaging. Streamline, target-field, Fourier integral and Fourier series methods are utilized. For both Fourier-based methods, the desired target field is specified on the surface of the conducting plates. For the Fourier series method it is possible to specify the target field at additional depths interior to the two conducting plates. The conducting plates are confined symmetrically in the xy plane with dimensions 2a x 2b, and are separated by 2d in the z direction. The specification of the target field is symmetric for the Fourier integral method, but can be over some asymmetric portion pa < x < qa and sb < y < tb of the coil dimensions (-1 < p < q < 1 and -1 < s < t < 1) for the Fourier series method. Arbitrary functions are used in the outer sections to ensure continuity of the magnetic field across the entire coil face. For the Fourier series case, the entire field is periodically extended as double half-range sine or cosine series. The resultant Fourier coefficients are substituted into the Fourier series and integral expressions for the internal and external magnetic fields, and stream functions on both the conducting surfaces. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis of field calculations from a ZX shim coil indicates that example designs and theory are well matched.
Resumo:
The paper presents a method for designing circular, shielded biplanar coils that can generate any desired field. A particular feature of these coils is that the target field may be located asymmetrically within the coil. A transverse component of the magnetic field produced by the coil is made to match a prescribed target field over the surfaces of two concentric spheres (the diameter of spherical volume) that define the target field location. The paper shows winding patterns and fields for several gradient and shim coils. It examines the effect that the finite coil size has on the winding patterns, using a Fourier-transform calculation for comparison.
Resumo:
Results of two experiments are reported that examined how people respond to rectangular targets of different sizes in simple hitting tasks. If a target moves in a straight line and a person is constrained to move along a linear track oriented perpendicular to the targetrsquos motion, then the length of the target along its direction of motion constrains the temporal accuracy and precision required to make the interception. The dimensions of the target perpendicular to its direction of motion place no constraints on performance in such a task. In contrast, if the person is not constrained to move along a straight track, the targetrsquos dimensions may constrain the spatial as well as the temporal accuracy and precision. The experiments reported here examined how people responded to targets of different vertical extent (height): the task was to strike targets that moved along a straight, horizontal path. In experiment 1 participants were constrained to move along a horizontal linear track to strike targets and so target height did not constrain performance. Target height, length and speed were co-varied. Movement time (MT) was unaffected by target height but was systematically affected by length (briefer movements to smaller targets) and speed (briefer movements to faster targets). Peak movement speed (Vmax) was influenced by all three independent variables: participants struck shorter, narrower and faster targets harder. In experiment 2, participants were constrained to move in a vertical plane normal to the targetrsquos direction of motion. In this task target height constrains the spatial accuracy required to contact the target. Three groups of eight participants struck targets of different height but of constant length and speed, hence constant temporal accuracy demand (different for each group, one group struck stationary targets = no temporal accuracy demand). On average, participants showed little or no systematic response to changes in spatial accuracy demand on any dependent measure (MT, Vmax, spatial variable error). The results are interpreted in relation to previous results on movements aimed at stationary targets in the absence of visual feedback.
Resumo:
Different interceptive tasks and modes of interception (hitting or capturing) do not necessarily involve similar control processes. Control based on preprogramming of movement parameters is possible for actions with brief movement times but is now widely rejected; continuous perceptuomotor control models are preferred for all types of interception. The rejection of preprogrammed control and acceptance of continuous control is evaluated for the timing of rapidly executed, manual hitting actions. It is shown that a preprogrammed control model is capable of providing a convincing account of observed behavior patterns that avoids many of the arguments that have been raised against it. Prominent continuous perceptual control models are analyzed within a common framework and are shown to be interpretable as feedback control strategies. Although these models can explain observations of on-line adjustments to movement, they offer only post hoc explanations for observed behavior patterns in hitting tasks and are not directly supported by data. It is proposed that rapid manual hitting tasks make up a class of interceptions for which a preprogrammed strategy is adopted-a strategy that minimizes the role of visual feedback. Such a strategy is effective when the task demands a high degree of temporal accuracy.
Resumo:
The effects of temporal precision constraints and movement amplitude on performance of an interceptive aiming task were examined. Participants were required to strike a moving target object with a 'bat' by moving the bat along a straight path (constrained by a linear slide) perpendicular to the path of the target. Temporal precision constraints were defined in terms of the time period (or window) within which contact with the target was possible. Three time windows were used (approx. 35, 50 and 65 ms) and these were achieved either by manipulating the size of the bat (experiment 1a), the size of the target (experiment 1b) or the speed of the target (experiment 2). In all experiments, movement time (MT) increased in proportion to movement amplitude but was only affected by differences in the temporal precision constraint if this was achieved by variation in the target's speed. In this case the MT was approximately inversely proportional to target speed. Peak movement speed was affected by temporal accuracy constraints in all three experiments: participants reached higher speeds when the temporal precision required was greater. These results are discussed with reference to the speed-accuracy trade-off observed for temporally constrained aiming movements. It is suggested that the MT and speed of interceptive aiming movements may be understood as responses to the spatiotemporal constraints of the task.
Resumo:
Fungal growth in time and space at the substrate surface was modelled for a simple system mimicking solid-state fermentation, using a polycarbonate Nucleopore membrane laid over a glucose solution. Biomass production depends on both tip density and the diffusion of glucose within the fungal hyphae. The model predicts early increases in both height and concentration, followed by a period in which the biomass profile moves with a constant wavefront. The rate of increase in height increases as tip diffusivity increases or as the Monod saturation constant for glucose decreases.
Resumo:
This paper reports the results of an experimental investigation into the fluidized-bed coating of cylindrical metal specimens using two types of thermoplastic powders, Rilsan(R) PA11, a nylon-11 powder produced by Elf Atochem, France and Cotene(TM) 4612, a linear low density polyethylene powder produced by J.R Courtenay (New Zealand). The effects of dipping time, preheat temperature and particle size distribution on coating thickness and surface finish were investigated. Consistent trends in coating thickness growth with dipping time were obtained for both nylon-11 and polyethylene powders with increases in coating thickness with preheat temperature. For the same preheat temperature, the lower melting point of polyethylene results in thicker coatings compared to those of nylon-11. There is a negligible change in the coating thickness for sieved powders compared to that for unsieved powders. A pre-heat temperatures of between 240 degrees C and 300 degrees C is necessary to achieve an acceptable surface finish with both nylon-11 and polyethylene powders. To minimize errors in achieving the desired coating thickness, dipping times shorter than 2 s are not recommended. The use of graphs of coating thickness versus dipping time in combination with the coating surface roughness plots presented in this paper enable the optimal choice of pre-heat temperature and dipping time to achieve acceptable surface finish. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.
Resumo:
While a considerable number of candidate Myb target genes have been reported to date, most of these are likely to play little or no role in transformation by myb oncogenes. Here we have used a conditionally myb-transformed myeloid cell line (ERMYB) to further examine Myb regulation of one candidate target gene-c-myc-that has the potential to affect cell proliferation. It was found that the major influence on c-myc expression was the presence of cytokine (GM-CSF) rather than Myb activity. We also describe the application of PCR-based subtractive hybridization and low-density cDNA array screening, in conjunction with the ERMYB line, to the identification of additional Myb target genes. Preliminary identification of a number of candidates is reported; these include myeloperoxidase, which is known to have essential Myb-binding sites in its regulatory region. (C) 2001 Academic Press.
Resumo:
Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
The compact myelin sheath represents one of the largest expanses of membrane-membrane contact in the body and, in the central nervous system, requires the myelin proteolipid protein (PLP) for assembly, To determine whether the molecular properties of PLP promote membrane adhesion and direct its subcellular localization in the absence of oligodendrocyte-specific targeting mechanisms, PLP was expressed in COS-I fibroblasts, Immunofluorescence staining indicated that PUP was translated effectively, transited the rough endoplasmic reticulum and Golgi apparatus, was delivered to the cell surface, and was endocytosed, In the plasma membrane, the PLP distribution was patchy and only sporadically coincided with sites of membrane-membrane contact between PLP-expressing cells, PLP was not randomly distributed, however, but correlated closely with microfilament locations in leading edge membranes and microvilli, as demonstrated by phalloidin double labeling, Our results indicate that even in non-myelinating cells, PLP can be concentrated in membranes associated with movement and growth, and suggest possible roles for the actin cytoskeleton in PLP localization, As PLP, DM20, and the DM20-like M6 protein all associate with actin-enriched membranes, this may be a common feature of PLP/DM20 gene family members. (C) 1997 Wiley-Liss, Inc.