57 resultados para Symmetric Even Graphs
em University of Queensland eSpace - Australia
Resumo:
Necessary and sufficient conditions for the existence of an edge-disjoint decomposition of any complete multipartite graph into even length cycles are investigated. Necessary conditions are listed and sufficiency is shown for the cases when the cycle length is 4, 6 or 8. Further results concerning sufficiency, provided certain small decompositions exist, are also given for arbitrary even cycle lengths.
Resumo:
Let K(r,s,t) denote the complete tripartite graph with partite sets of sizes r, s and t, where r less than or equal to s less than or equal to t. Necessary and sufficient conditions are given for decomposability of K(r, s, t) into 5-cycles whenever r, s and t are all even. This extends work done by Mahmoodian and Mirza-khani (Decomposition of complete tripartite graphs into 5-cycles, in: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235-241) and Cavenagh and Billington. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of an (n - 1)-edge colouring of K-n (n even), and for an n-edge colouring of K-n (n odd) in which the colours assigned to the edges incident with two vertices are specified in advance.
Resumo:
For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.
Resumo:
Necessary conditions for the complete graph on n vertices to have a decomposition into 5-cubes are that 5 divides it - 1 and 80 divides it (it - 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for it even, thus completing the spectrum problem for the 5-cube and lending further weight to a long-standing conjecture of Kotzig. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The trade spectrum of a simple graph G is defined to be the set of all t for which it is possible to assemble together t copies of G into a simple graph H, and then disassemble H into t entirely different copies of G. Trade spectra of graphs have applications to intersection problems, and defining sets, of G-designs. In this investigation, we give several constructions, both for specific families of graphs, and for graphs in general.
Resumo:
In this paper we completely solve the problem of finding a maximum packing of any complete multipartite graph with edge-disjoint 4-cycles, and the minimum leaves are explicitly given.
Resumo:
A 4-cycle in a tripartite graph with vertex partition {V-1, V-2, V-3} is said to be gregarious if it has at least one vertex in each V-i, 1 less than or equal to i less than or equal to 3. In this paper, necessary and sufficient conditions are given for the existence of an edge-disjoint decomposition of any complete tripartite graph into gregarious 4-cycles.
Resumo:
A graph H is said to divide a graph G if there exists a set S of subgraphs of G, all isomorphic to H, such that the edge set of G is partitioned by the edge sets of the subgraphs in S. Thus, a graph G is a common multiple of two graphs if each of the two graphs divides G.
Resumo:
Necessary and sufficient conditions are given for the edge-disjoint decomposition of a complete tripartite graph K-r,K-s,K-t into exactly alpha 3-cycles and beta 4-cycles. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n = p(2) for an odd prime p. We construct a family of (p-1)/2 non-isomorphic perfect 1-factorisations of K-n,K-n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltoilian if the permutation defined by any row relative to any other row is a single Cycle. (C) 2002 Elsevier Science (USA).
Resumo:
Let H be a graph. A graph G is said to be H-free if it contains no subgraph isomorphic to H. A graph G is said to be an H-saturated subgraph of a graph K if G is an H-free subgraph of K with the property that for any edge e is an element of E(K)\E(G), G boolean OR {e} is not H-free. We present some general results on K-s,K-t-saturated subgraphs of the complete bipartite graph K-m,K-n and study the problem of finding, for all possible values of q, a C-4-saturated subgraph of K., having precisely q edges. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We construct the Drinfeld twists ( factorizing F-matrices) of the gl(m-n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the F-matrix ( the F-basis). We resolve the hierarchy of the nested Bethe vectors in the F-basis for the gl(m-n) supersymmetric model.