208 resultados para Surface Interactions
em University of Queensland eSpace - Australia
Resumo:
Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.
Resumo:
Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.
Resumo:
Column-based refolding of complex and highly disulfide-bonded proteins simplifies protein renaturation at both preparative and process scale by integrating and automating a number of operations commonly used in dilution refolding. Bovine serum albumin (BSA) was used as a model protein for refolding and oxido-shuffling on an ion-exchange column to give a refolding yield of 55 % after 40 Ih incubation. Successful on-column refolding was conducted at protein concentrations of up to 10 mg/ml and refolded protein, purified from misfolded forms, was eluted directly from the column at a concentration of 3 mg/ml. This technique integrates the dithiothreitol removal, refolding, concentration and purification steps, achieving a high level of process simplification and automation, and a significant saving in reagent costs when scaled. Importantly, the current result suggests that it is possible to controllably refold disulfide-bonded proteins using common and inexpensive matrices, and that it is not always necessary to control protein-surface interactions using affinity tags and expensive chromatographic matrices. Moreover, it is possible to strictly control the oxidative refolding environment once denatured protein is bound to the ion-exchange column, thus allowing precisely controlled oxido-shuffling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some molecules unique to schistosomes and platyhelminths. The biology of some components, particular those contributing to host-parasite interactions as well as chemotherapy and immunotherapy are discussed. Unresolved questions in relation to the structure and function of the tegument relate to dynamic organization of the syncytial layer. (C) 2004 Wiley Periodicals, Inc.
Resumo:
In this study we have demonstrated the interactions of kalata B1 and its naturally occurring analogue kalata B6 with five model lipid membranes and have analyzed the binding kinetics using surface plasmon resonance. Two kalata peptides showed a higher affinity for the phosphatidylethanolamine-containing membranes, indicating that the peptides would bind selectively to bacterial membranes. Also we have optimized the procedure for the immobilization of five liposome mixtures and have shown that the procedure provides reproducible levels of immobilized liposomes and could be used to screen the selective binding of putative antimicrobial peptides to model mammalian or microbial phospholipid membranes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
The role of plasma proteins on the cellular uptake of lipophilic substrates has perplexed investigators for many years. We tested the hypothesis that an ionic interaction between the protein-ligand complex and hepatocyte surface may be responsible for supplying more ligand to the cell for uptake. The surface-charged groups on albumin were modified to yield proteins having a range of isoelectric points (ALB, ALBs, ALBm, ALBe had values of 4.8-5.0, 4.5-4.7, 3.0-3.5, 8.4-8.6, respectively). [H-3]-Palmitate uptake studies were performed with adult rat hepatocyte suspensions using similar unbound ligand fractions in the presence of the different binding proteins. Mass spectrometry, isoelectric focusing (pI), and heptane : water partitioning were used to determine protein molecular weight, pI, and protein-palmitate equilibrium binding constant, respectively. Hepatocyte [H-3]-palmitate clearance in the presence of ALBs and ALBm were significantly lower (p < 0.05) than ALB, whereas [H-3]-palmitate clearance in the presence of ALBe was significantly higher (p < 0.05) than ALB. The data were consistent with the notion that ionic interactions between extracellular protein-ligand complexes and the hepatocyte surface facilitate the uptake of long-chain fatty acids.
Resumo:
Adsorption of one nondissociating and four dissociating aromatic compounds onto three untreated activated carbons from dilute aqueous solutions were investigated. All adsorption experiments were preformed in pH-controlled solutions. The experimental isotherms were analyzed using the homogeneous Langmuir model. The surface chemical properties of the activated carbons were characterized using a combination of water adsorption, X-ray photoemission spectroscopy, and mass titration. These data give rise to a new insight into the adsorption mechanism of aromatic solutes, in their molecular and ionic forms, onto untreated activated carbons. It was found that, for the hydrophilic activated carbons, the dominant adsorption forces were observed to be dipolar interactions when the solutes were in their molecular form whereas dispersive forces, such as pi-pi interactions, were most likely dominant in the case of the basic hydrophobic carbons. However, when the solutes were in their ionic form adsorption occurs in all cases through dispersive forces.
Resumo:
This paper examines the influence of the chemical constituents of activated sludge and extracted extracellular polymeric substances (EPS) on the surface properties, hydrophobicity, surface charge (SC) and flocculating ability (FA) of activated sludge floes. Activated sludge samples from 7 different full-scale wastewater treatment plants were examined. Protein and humic substances were found to be the dominant polymeric compounds in the activated sludges and the extracted EPS, and they significantly affected the FA and surface properties, hydrophobicity and SC, of the sludge floes. The polymeric compounds proteins, humic substances and carbohydrates in the sludge floes and the extracted EPS contributed to the negative SC, but correlated negatively to the hydrophobicity of sludge floes. The quantity of protein and carbohydrate within the sludge and the extracted EPS was correlated positively to the FA of the sludge floes, while increased amounts of humic substances resulted in lower FA. In contrast, increased amounts of total extracted EPS had a negative correlation to FA. The results reveal that the quality and quantity of the polymeric compounds within the sludge floes is more informative, with respect to understanding the mechanisms involved in flocculation, than if only the extracted EPS are considered. This is an important finding as it indicates that extracting EPS may be insufficient to characterise the EPS. This is due to the low extraction efficiency and difficulties involved in the separation of EPS from other organic compounds. Correlations were observed between the surface properties and FA of the sludge floes., This confirms that the surface properties of the, sludge flocs play an important role in the bioflocculation process but that also other interactions like polymer entanglement are important. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The EphA3 receptor tyrosine kinase preferentially binds ephrin-A5, a member of the corresponding subfamily of membrane-associated ligands. Their interaction regulates critical cell communication functions in normal development and may play a role in neoplasia. Here we describe a random mutagenesis approach, which we employed to study the molecular determinants of the EphA3/ephrin-A5 recognition. Selection and functional characterization of EphA3 point mutants with impaired ephrin-A5 binding from a yeast expression library defined three EphA3 surface areas that are essential for the EphA3/ephrin-A5 interaction. Two of these map to regions identified previously in the crystal structure of the homologous EphB2-ephrin-B2 complex as potential ligand/receptor interfaces. In addition, we identify a third EphA3/ephrin-A5 interface that falls outside the structurally characterized interaction domains. Functional analysis of EphA3 mutants reveals that all three Eph/ephrin contact areas are essential for the assembly of signaling-competent, oligomeric receptor-ligand complexes.
Resumo:
Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.
Resumo:
The differences in physical properties of air and water pose unique behavioural and physiological demands on semiaquatic animals. The aim of this study was to describe the diving behaviour of the freshwater crocodile Crocodylus johnstoni in the wild and to assess the relationships between diving, body temperature, and heart rate. Time-depth recorders, temperature-sensitive radio transmitters, and heart rate transmitters were deployed on each of six C. johnstoni (4.0-26.5 kg), and data were obtained from five animals. Crocodiles showed the greatest diving activity in the morning (0600-1200 hours) and were least active at night, remaining at the water surface. Surprisingly, activity pattern was asynchronous with thermoregulation, and activity was correlated to light rather than to body temperature. Nonetheless, crocodiles thermoregulated and showed a typical heart rate hysteresis pattern (heart rate during heating greater than heart rate during cooling) in response to heating and cooling. Additionally, dive length decreased with increasing body temperature. Maximum diving length was 119.6 min, but the greatest proportion of diving time was spent on relatively short (