40 resultados para Superheated droplets detector
em University of Queensland eSpace - Australia
Resumo:
There is a growing body of data on avian eyes, including measurements of visual pigment and oil droplet spectral absorption, and of receptor densities and their distributions across the retina. These data are sufficient to predict psychophysical colour discrimination thresholds for light-adapted eyes, and hence provide a basis for relating eye design to visual needs. We examine the advantages of coloured oil droplets, UV vision and tetrachromacy for discriminating a diverse set of avian plumage spectra under natural illumination. Discriminability is enhanced both by tetrachromacy and coloured oil droplets. Oil droplets may also improve colour constancy. Comparison of the performance of a pigeon's eye, where the shortest wavelength receptor peak is at 410 nm, with that of the passerine Leiothrix, where the ultraviolet-sensitive peak is at 365 nm, generally shows a small advantage to the latter, but this advantage depends critically on the noise level in the sensitivity mechanism and on the set of spectra being viewed.
Resumo:
The eyes of most diurnal reptiles and birds contain coloured retinal filters-oil droplets. Although these filters are widespread, their adaptive advantage remains uncertain. To understand why coloured oil droplets appeared and were retained during evolution, I consider both the benefits and the costs of light filtering in the retina. Oil droplets decrease cone quantum catch and reduce the overlap in sensitivity between spectrally adjacent cones. The reduction of spectral overlap increases the volume occupied by object colours in a cone space, whereas the decrease in quantum catch increases noise, and thus reduces the discriminability of similar colours. The trade-off between these two effects determines the total benefit of oil droplets. Calculations show that coloured oil droplets increase the number of object colours that can be discriminated, and thus are beneficial for colour vision.
Resumo:
Microspectrophotometric examination of the retina of a procellariiform marine bird, the wedge-tailed shearwater Puffinus pacificus, revealed the presence of five different types of vitamin A(1)-based visual pigment in seven different types of photoreceptor. A single class of rod contained a medium-wavelength sensitive visual pigment with a wavelength of maximum absorbance (lambda(max)) at 502 nm. Four different types of single cone contained visual pigments maximally sensitive in either the violet (VS, lambda(max) 406 nm), short (SWS, lambda(max) 450 nm), medium (MWS, lambda(max) 503 nm) or long (LWS, lambda(max) 566 nm) spectral ranges. In the peripheral retina, the SWS, MWS and LWS single cones contained pigmented oil droplets in their inner segments with cut-off wavelengths (lambda(cut)) at 445 (C-type), 506 (Y-type) and 562 nm (R-type), respectively. The VS visual pigment was paired with a transparent (T-type) oil droplet that displayed no significant absorption above at least 370 run. Both the principal and accessory members of the double cone pair contained the same 566 nm lambda(max) visual pigment as the LWS single cones but only the principal member contained an oil droplet, which had a lambda(cut) at 413 nm. The retina had a horizontal band or 'visual streak' of increased photoreceptor density running across the retina approximately 1.5 mm dorsal to the top of the pecten. Cones in the centre of the horizontal streak were smaller and had oil droplets that were either transparent/colourless or much less pigmented than at the periphery. It is proposed that the reduction in cone oil droplet pigmentation in retinal areas associated with high visual acuity is an adaptation to compensate for the reduced photon capture ability of the narrower photoreceptors found there. Measurements of the spectral transmittance of the ocular media reveal that wavelengths down to at least 300 nm would be transmitted to the retina.
Resumo:
Rab GTPases are crucial regulators of membrane traffic. Here we have examined a possible association of Rab proteins with lipid droplets (LDs), neutral lipid-containing organelles surrounded by a phospholipid monolayer, also known as lipid bodies, which have been traditionally considered relatively inert storage organelles. Although we found close apposition between LDs and endosomal compartments labeled by expressed Rab5, Rab7, or Rab11 constructs, there was no detectable labeling of the LD surface itself by these Rab proteins. In contrast, GFP-Rab18 localized to LDs and immunoelectron microscopy showed direct association with the monolayer surface. Green fluorescent protein (GFP)-Rab18-labeled LDs underwent oscillatory movements in a localized area as well as sporadic, rapid, saltatory movements both in the periphery of the cell and toward the perinuclear region. In both adipocytes and non-adipocyte cell lines Rab18 localized to a subset of LDs. To gain insights into this specific localization, Rab18 was co-expressed with Cav3(DGV), a truncation mutant of caveolin-3 shown to inhibit the catabolism and motility of lipid droplets. GFP-Rab18 and mRFP-Cav3(DGV) labeled mutually exclusive subpopulations of LDs. Moreover, in 3T3-L1 adipocytes, stimulation of lipolysis increased the localization of Rab18 to LDs, an effect reversed by beta-adrenergic antagonists. These results show that a Rab protein localizes directly to the monolayer surface of LDs. In addition, association with the LD surface was increased following stimulation of lipolysis and inhibited by a caveolin mutant suggesting that recruitment of Rab18 is regulated by the metabolic state of individual LDs.
Resumo:
Numerical simulations are conducted to investigate how a droplet of Newtonian liquid. entrained in a higher viscosity Newtonian liquid, behaves when passing through an axisymmetric microfluidic contraction. Simulations are performed using a transient Volume of Fluid finite volume algorithm, and cover ranges of Reynolds and Weber numbers relevant to microfluidic flows. Results are presented for a droplet to surrounding fluid viscosity ratio of 0.001. In contrast to behaviour at higher viscosity ratios obtained previously by the authors, shear and interfacial tension driven instabilities often develop along the droplet Surface. leading to complex shape development, and in some instances, droplet breakup. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the targeting of caveolin to lipid bodies in adipocytes that express high levels of caveolins and contain well-developed lipid droplets. We observed that the lipid droplets isolated from adipocytes of caveolin-1 knock out mice contained dramatically reduced levels of cholesterol, indicating that caveolin is required for maintaining the cholesterol content of this organelle. Analysis of caveolin distribution by cell fractionation and fluorescent light microscopy in 3T3-L1 adipocytes indicated that addition of cholesterol rapidly stimulated translocation of caveolin to lipid droplets. The cholesterol-induced trafficking of caveolins to lipid droplets was shown to be dynamin- and protein kinase C (PKC)-dependent and modulated by src tyrosine kinase activation, suggesting a role for caveolar endocytosis in this novel trafficking pathway. Consistent with this, caveolae budding was stimulated by cholesterol addition. The present data identify lipid droplets as potential target organelles for caveolar endocytosis and demonstrate a role for caveolin-1 in the maintenance of free cholesterol levels in adipocyte lipid droplets.
Resumo:
Lipid droplets form the main lipid store in eukaryotic cells. Although all cells seem to be able to generate lipid droplets, their biogenesis, regulatory mechanisms and interactions with other organelles remain largely elusive. In this article, we outline some of the recent developments in lipid droplet cell biology. We show the mobile and dynamic nature of this organelle, and advocate the adoption of a unified nomenclature to consolidate terminology in this emerging field.
Resumo:
A novel nucleation apparatus is presented for the production of narrow sized nuclei from various powder and binder liquid combinations. Mono-sized binder liquid droplets are produced by a specially designed mono-disperse droplet generator. The droplet generator is positioned above a conveyor belt, transporting a powder bed through the spray zone of the droplet generator. By nucleating powder on a conveyer belt, the nucleation mechanism is completely separated from all other granulation mechanisms due to the lack of relative motion between primary particles and/or formed nuclei. Nucleation tests were performed using chalcopyrite and limestone powders with water as the binder liquid. At all operating conditions, the formed nuclei were found to originate from multiplicities of drops that merged on the powder bed surface. Investigation of the dynamics of nuclei formation showed that powder-binder liquid combinations with fast penetration dynamics result in less variation in the number of droplets from which nuclei originate. Smaller and more narrowly distributed nuclei were also achieved by increasing powder speed through the spray zone.
Resumo:
Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.