35 resultados para Statistical Error

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length was studied with Canonical Ensemble (NVT) and Gibbs Ensemble Monte Carlo Simulations (GEMC). The Canonical Ensemble was a collection of cubic simulation boxes in which a finite pore resides, while the Gibbs Ensemble was that of the pore space of the finite pore. Argon was used as a model for Lennard-Jones fluids, while the adsorbent was modelled as a finite carbon slit pore whose two walls were composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. The Lennard-Jones (LJ) 12-6 potential model was used to compute the interaction energy between two fluid particles, and also between a fluid particle and a carbon atom. Argon adsorption isotherms were obtained at 87.3 K for pore widths of 1.0, 1.5 and 2.0 nm using both Canonical and Gibbs Ensembles. These results were compared with isotherms obtained with corresponding infinite pores using Grand Canonical Ensembles. The effects of the number of cycles necessary to reach equilibrium, the initial allocation of particles, the displacement step and the simulation box size were particularly investigated in the Monte Carlo simulation with Canonical Ensembles. Of these parameters, the displacement step had the most significant effect on the performance of the Monte Carlo simulation. The simulation box size was also important, especially at low pressures at which the size must be sufficiently large to have a statistically acceptable number of particles in the bulk phase. Finally, it was found that the Canonical Ensemble and the Gibbs Ensemble both yielded the same isotherm (within statistical error); however, the computation time for GEMC was shorter than that for canonical ensemble simulation. However, the latter method described the proper interface between the reservoir and the adsorbed phase (and hence the meniscus).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of presence/absence data in wildlife management and biological surveys is widespread. There is a growing interest in quantifying the sources of error associated with these data. We show that false-negative errors (failure to record a species when in fact it is present) can have a significant impact on statistical estimation of habitat models using simulated data. Then we introduce an extension of logistic modeling, the zero-inflated binomial (ZIB) model that permits the estimation of the rate of false-negative errors and the correction of estimates of the probability of occurrence for false-negative errors by using repeated. visits to the same site. Our simulations show that even relatively low rates of false negatives bias statistical estimates of habitat effects. The method with three repeated visits eliminates the bias, but estimates are relatively imprecise. Six repeated visits improve precision of estimates to levels comparable to that achieved with conventional statistics in the absence of false-negative errors In general, when error rates are less than or equal to50% greater efficiency is gained by adding more sites, whereas when error rates are >50% it is better to increase the number of repeated visits. We highlight the flexibility of the method with three case studies, clearly demonstrating the effect of false-negative errors for a range of commonly used survey methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector error-correction models (VECMs) have become increasingly important in their application to financial markets. Standard full-order VECM models assume non-zero entries in all their coefficient matrices. However, applications of VECM models to financial market data have revealed that zero entries are often a necessary part of efficient modelling. In such cases, the use of full-order VECM models may lead to incorrect inferences. Specifically, if indirect causality or Granger non-causality exists among the variables, the use of over-parameterised full-order VECM models may weaken the power of statistical inference. In this paper, it is argued that the zero–non-zero (ZNZ) patterned VECM is a more straightforward and effective means of testing for both indirect causality and Granger non-causality. For a ZNZ patterned VECM framework for time series of integrated order two, we provide a new algorithm to select cointegrating and loading vectors that can contain zero entries. Two case studies are used to demonstrate the usefulness of the algorithm in tests of purchasing power parity and a three-variable system involving the stock market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatic disposition and metabolite kinetics of a homologous series of diflunisal O-acyl esters (acetyl, butanoyl, pentanoyl, anti hexanoyl) were determined using a single-pass perfused in situ rat liver preparation. The experiments were conducted using 2% BSA Krebs-Henseleit buffer (pH 7.4), and perfusions were performed at 30 mL/min in each liver. O-Acyl esters of diflunisal and pregenerated diflunisal were injected separately into the portal vein. The venous outflow samples containing the esters and metabolite diflunisal were analyzed by high performance liquid chromatography (HPLC). The normalized outflow concentration-time profiles for each parent ester and the formed metabolite, diflunisal, were analyzed using statistical moments analysis and the two-compartment dispersion model. Data (presented as mean +/- standard error for triplicate experiments) was compared using ANOVA repeated measures, significance level P < 0.05. The hepatic availability (AUC'), the fraction of the injected dose recovered in the outflowing perfusate, for O-acetyldiflunisal (C2D = 0.21 +/- 0.03) was significantly lower than the other esters (0.34-0.38). However, R-N/f(u), the removal efficiency number R-N divided by the unbound fraction in perfusate f(u), which represents the removal efficiency of unbound ester by the liver, was significantly higher for the most lipophilic ester (O-hexanoyldiflunisal, C6D = 16.50 +/- 0.22) compared to the other members of the series (9.57 to 11.17). The most lipophilic ester, C6D, had the largest permeability surface area (PS) product (94.52 +/- 38.20 mt min-l g-l liver) and tissue distribution value VT (35.62 +/- 11.33 mL g(-1) liver) in this series. The MTT of these O-acyl esters of diflunisal were not significantly different from one another. However, the metabolite diflunisal MTTs tended to increase with the increase in the parent ester lipophilicity (11.41 +/- 2.19 s for C2D to 38.63 +/- 9.81 s for C6D). The two-compartment dispersion model equations adequately described the outflow profiles for the parent esters and the metabolite diflunisal formed from the O-acyl esters of diflunisal in the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To describe variation in all cause and selected cause-specific mortality rates across Australia. METHODS: Mortality and population data for 1997 were obtained from the Australian Bureau of Statistics. All cause and selected cause-specific mortality rates were calculated and directly standardised to the 1997 Australian population in 5-year age groups. Selected major causes of death included cancer, coronary artery disease, cerebrovascular disease, diabetes, accidents and suicide. Rates are reported by statistical division, and State and Territory. RESULTS: All cause age-standardised mortality was 6.98 per 1000 in 1997 and this varied 2-fold from a low in the statistical division of Pilbara, Western Australia (5.78, 95% confidence interval 5.06-6.56), to a high in Northern Territory-excluding Darwin (11.30, 10.67-11.98). Similar mortality variation (all p<0.0001) exists for cancer (1.01-2.23 per 1000) and coronary artery disease (0.99-2.23 per 1000), the two biggest killers. Larger variation (all p<0.0001) exists for cerebrovascular disease (0.7-11.8 per 10,000), diabetes (0.7-6.9 per 10,000), accidents (1.7-7.2 per 10,000) and suicide (0.6-3.8 per 10,000). Less marked variation was observed when analysed by State and Territory. but Northern Territory consistently has the highest age-standardised mortality rates. CONCLUSIONS: Analysed by statistical division, substantial mortality gradients exist across Australia, suggesting an inequitable distribution of the determinants of health. Further research is required to better understand this heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of a major multi-site epidemiologic study of heart disease has required estimation of the pairwise correlation of several measurements across sub-populations. Because the measurements from each sub-population were subject to sampling variability, the Pearson product moment estimator of these correlations produces biased estimates. This paper proposes a model that takes into account within and between sub-population variation, provides algorithms for obtaining maximum likelihood estimates of these correlations and discusses several approaches for obtaining interval estimates. (C) 1997 by John Wiley & Sons, Ltd.