134 resultados para Spectral theory, differential operators, quantum graphs, indefinite operators
em University of Queensland eSpace - Australia
Resumo:
In the absence of an external frame of reference-i.e., in background independent theories such as general relativity-physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original non-relational theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the collapse of the wave packet as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of spin networks introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.
Resumo:
We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.
Resumo:
Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules L-h(g) of the quantized enveloping algebras U-h(g). On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra g an abstract quantum Lie algebra g(h) independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras L-h(g) are isomorphic to an abstract quantum Lie algebra g(h). In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras L-h(g) associated to the same g are isomorphic, 2) the quantum Lie product of any Ch(B) is q-antisymmetric. We also describe a construction of L-h(g) which establishes their existence.
Resumo:
Non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, such as in high Q cavities, is treated using a quasimode description, and the pseudo mode theory for single quantum reservoir excitations is obtained via Fano diagonalisation. The atomic transitions are coupled to a discrete set of (cavity) quasimodes, which are also coupled to a continuum set of (external) quasimodes with slowly varying coupling constants. Each pseudomode corresponds to a cavity quasimode, and the original reservoir structure is obtained in expressions for the equivalent atom-true mode coupling constants. Cases of multiple excitation of the reservoir are now treatable via Markovian master equations for the atom-discrete quasimode system.
Resumo:
The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.
Resumo:
A mechanical electroscope based on a change in the resonant frequency of a cantilever one micron in size in the presence of charge has recently been fabricated. We derive the decoherence rate of a charge superposition during measurement with such a device using a master equation theory adapted from quantum optics. We also investigate the information produced by such a measurement, using a quantum trajectory approach. Such instruments could be used in mesoscopic electronic systems, and future solid-state quantum computers, so it is useful to know how they behave when used to measure quantum superpositions of charge.
Resumo:
We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections.
Resumo:
In this paper we describe an approach to interface Abstract State Machines (ASM) with Multiway Decision Graphs (MDG) to enable tool support for the formal verification of ASM descriptions. ASM is a specification method for software and hardware providing a powerful means of modeling various kinds of systems. MDGs are decision diagrams based on abstract representation of data and axe used primarily for modeling hardware systems. The notions of ASM and MDG axe hence closely related to each other, making it appealing to link these two concepts. The proposed interface between ASM and MDG uses two steps: first, the ASM model is transformed into a flat, simple transition system as an intermediate model. Second, this intermediate model is transformed into the syntax of the input language of the MDG tool, MDG-HDL. We have successfully applied this transformation scheme on a case study, the Island Tunnel Controller, where we automatically generated the corresponding MDG-HDL models from ASM specifications.
Resumo:
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.