5 resultados para Soy protein isolate

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current success of soy foods is driving soy ingredient manufacturers to develop innovative products for food manufacturers. One such innovation is separating the soy proteins glycinin and beta-conglycinin to take advantage of their individual functional and nutritional properties. Precipitation by acidification is a low-cost method for separating these two proteins. Separation is achieved by preferentially precipitating glycinin at pH ~ 6 while beta-conglycinin remains in solution. Understanding the particle formation during protein precipitation is important as it can influence the efficiency of the precipitation process as well as subsequent downstream processes such as the particle-liquid separation step, usually achieved by centrifugation. Most of the previous soy protein precipitation studies are limited to precipitation at pH 4 as this is the pH range most commonly used in the commercial manufacturing of soy protein isolates. To date, there have been no studies on the particle formation during precipitation at pH > 5.Precipitation of soy protein is generally thought to occur by the rapid formation of primary particles in the size range of 0.1 - 0.3 microns followed by aggregation of these particles via collision to aggregates of size about 1 - 50 microns. The formation of the primary particles occurs on a time scale much shorter than that of the overall precipitation process (Nelson and Glatz, 1985). This study shows that precipitation of soy protein is indeed rapid. At high pH levels, binary liquid-liquid separation occurs forming a protein-rich heavy phase. The protein-rich phase appears as droplets which can be coalesced to form a uniform bulk layer under centrifugation forces. Upon lowering the pH level by the addition of acid, further protein is precipitated as amorphous material which binds the droplets together to form aggregates of amorphous precipitates. Liquid-liquid separation has been observed in many protein solutions but this phenomenon has only scarcely been reported in the literature for soy proteins. It presents an exciting opportunity for an innovative product. Features of the liquid-phase protein such as protein yield and purity will be characterized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The similarity between the Peleg, Pilosof –Boquet–Batholomai and Singh–Kulshrestha models was investigated using the hydration behaviours of whey protein concentrate, wheat starch and whey protein isolate at 30 °C in 100% relative humidity. The three models were shown to be mathematically the same within experimental variations, and they yielded parameters that are related. The models, in their linear and original forms, were suitable (r2 > 0.98) in describing the sorption behaviours of the samples, and are sensitive to the length of the sorption segment used in the computation. The whey proteins absorbed more moisture than the wheat starch, and the isolate exhibited a higher sorptive ability than the concentrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gelatinisation and retrogradation of starch-whey mixtures were studied in water (pH 7) using the Rapid Visco-Analyser (RVA). The starch:whey ratios ranged from 0:100 - 100:0. Wheat starch, and whey protein concentrate (about 80% solids basis) and isolate (about 96% solids basis) were used. Mixtures with whey isolates were generally more viscous than those with whey concentrates, and this was attributed to fewer non-protein milk components in the former. Whey protein concentrates and isolates reduced the peak, trough and final viscosities of the mixtures, but the breakdown and setback ratios of the mixtures were increased. The gelatinisation temperature increased with whey substitutions indicating that whey protein delayed starch gelatinisation. The temperature of fastest viscosity development decreased as the amount of whey was increased. Whey protein isolate generally exercised a lesser effect than the concentrate. At between 40 - 50% whey substitutions, the dominant phase changed from starch to protein irrespective of the source of the whey protein. An additive law poorly defined selected RVA parameters. Both macromolecules interacted to define the viscosity of the mixture, and an exponential model predicted the viscosity better than the additive law. The results obtained in this study are discussed to assist the understanding of extrusion processing of starch-whey systems as models for whey-fortified snack and ready-to-eat foods. Copyright ©2006 The Berkeley Electronic Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.