125 resultados para Solids mixing

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is an easily automated, reliable technique to investigate axial mixing within rotating drums. Moist bran can be clearly differentiated from dry bran using MRI allowing a non-segregating tracer for axial mixing. For a 20-cm diameter drum, the axial dispersion coefficient in the particle bed was 0.51 cm s(-2). Axial dispersion is scale-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon resonant parametric four-wave mixing and a newly developed variant called seeded parametric four-wave mixing are used to detect trace quantities of sodium in a flame. Both techniques are simple, requiring only a single laser to generate a signal beam at a different wavelength which propagates collinearly with the pump beam, allowing efficient signal recovery. A comparison of the two techniques reveals that seeded parametric four-wave mixing is more than two orders of magnitude more sensitive than parametric four-wave mixing, with an estimated detection sensitivity of 5 x 10(9) atoms/cm(3). Seeded parametric four-wave mixing is achieved by cascading two parametric four-wave mixing media such that one of the parametric fields generated in the first high-density medium is then used to seed the same four-wave mixing process in a second medium in order to increase the four-wave mixing gain. The behavior of this seeded parametric four-wave mixing is described using semiclassical perturbation theory. A simplified small-signal theory is found to model most of the data satisfactorily. However, an anomalous saturationlike behavior is observed in the large signal regime. The full perturbation treatment, which includes the competition between two different four-wave mixing processes coupled via the signal field, accounts for this apparently anomalous behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a nonlinear wave equation for a signal beam which is coupled to a pump beam by two-wave-mixing in a photorefractive crystal. This equation describes self-focusing of the signal beam. We compare two-wave-mixing induced spatial self-focusing of single-pass experiments in a diffusion-type photorefractive crystal and of a photorefractive oscillator using the same crystal. We observe that the nonlinear refractive index change in the oscillator is decreased while increasing resonator losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of the effect of fuel stagnation temperature on mixing in a supersonic hydrogen-air flame is described, The combustor consisted of a constant-area rectangular duct with a centrally located fuel-injection strut that spanned the width. A high-enthalpy stream of air was supplied by a free-piston shock tunnel, and heated hydrogen fuel, supplied by a gun-tunnel, was injected into the freestream as a coflowing planar jet. The freestream total enthalpies were 5.6, 6.5, and 9 MJ/kg, and fuel stagnation temperatures were 300, 450, and 700 K, Raising the fuel stagnation temperature increased the fuel velocity to be near that of the airstream and resulted in a decrease in the mixing rate, Even as the fuel and air velocities became equal, significant mixing still occurred because of a large difference in density, Increasing the freestream enthalpy reduced the difference between the initial air temperature and the adiabatic flame temperature, which in turn reduced the heat addition, and subsequently, the amount of pressure rise in the duct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluid mixing in steady and unsteady Bow through a channel containing periodic square obstructions has been studied using a finite-difference simulation to determine fluid velocities, followed by the use of passive marker particle advection to look at fluid transport out of the cavities formed between each of the obstructions. The geometry and Bow conditions were chosen from the work by Perkins (1989, M.S. Thesis, Lehigh University; 1992, Ph.D. Thesis, Lehigh University); who investigated heat transfer enhancement due to unsteady flow through such an obstructed channel. Particle advection shows that Bow regimes which are predicted to give good mixing based on snapshots of instantaneous streamline contour plots were not necessarily able to efficiently mix fluid which started in the cavity regions throughout the channel. The use of Poincare sections shows regular regions existing under these conditions which inhibit efficient fluid transport. These regular regions are found to disappear when the unsteady Bow velocity is increased. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of spin-orbit mixing and nephelauxetic effects in the electronic spectra of nickel(II)-encapsulating complexes involving mixed nitrogen and sulfur donors is reported. As the number of sulfur donors is systematically varied through the series [Ni(N6-xSx)](2+) (x = 0-6), the spin-forbidden (3)A(2)g --> E-1(g) and (3)A(2g) --> (1)A(1g) transitions undergo a considerable reduction in energy whereas the spin-allowed transitions are relatively unchanged. The [Ni(diAMN(6)sar)](2+) and [Ni(AMN(5)Ssar)](2+) complexes exhibit an unusual band shape for the (3)A(2g) --> T-3(2g) transition which is shown to arise from spin-orbit mixing of the E spin-orbit levels associated with the E-1(g) and T-3(2g) states. A significant differential nephelauxetic effect also arises from the covalency differences between the t(2g) and e(g) orbitals with the result that no single set of Racah B and C interelectron repulsion parameters adequately fit the observed spectra. Using a differential covalency ligand-field model, the spectral transitions are successfully reproduced with three independent variables corresponding to 10Dq and the covalency parameters f(t) and f(e), associated with the t(2g) and e(g) orbitals, respectively. The small decrease in f(t) from unity is largely attributed to central-field covalency effects whereas the dramatic reduction in f(e) with increasing number of sulfur donors is a direct consequence of the increased metal-ligand covalency associated with the sulfur donors. Covalency differences between the t(2g) and e(g) orbitals also result in larger 10Dq values than those obtained simply from the energy of the (3)A(2g) --> T-3(2g) spin-allowed transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a sensitive resonant four-wave mixing technique based on two-photon parametric four-wave mixing with the addition of a phase matched ''seeder'' field. Generation of the seeder field via the same four-wave mixing process in a high pressure cell enables automatic phase matching to be achieved in a low pressure sample cell. This arrangement facilitates sensitive detection of complex molecular spectra by simply tuning the pump laser. We demonstrate the technique with the detection of nitric oxide down to concentrations more than 4 orders of magnitude below the capability of parametric four-wave mixing alone, with an estimated detection threshold of 10(12) molecules/cm(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.