30 resultados para Sobolev Embeddings

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we study the following p(x)-Laplacian problem: -div(a(x)&VERBAR;&DEL; u&VERBAR;(p(x)-2)&DEL; u)+b(x)&VERBAR; u&VERBAR;(p(x)-2)u = f(x, u), x ε &UOmega;, u = 0, on &PARTIAL; &UOmega;, where 1< p(1) &LE; p(x) &LE; p(2) < n, &UOmega; &SUB; R-n is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in W-0(1,p(x)) for the p(x)-Laplacian problems in the superlinear and sublinear cases. © 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the semilinear Schrodinger equation -Deltau+V(x)u= K(x) \u \ (2*-2 u) + g(x; u), u is an element of W-1,W-2 (R-N), where N greater than or equal to4, V, K, g are periodic in x(j) for 1 less than or equal toj less than or equal toN, K>0, g is of subcritical growth and 0 is in a gap of the spectrum of -Delta +V. We show that under suitable hypotheses this equation has a solution u not equal 0. In particular, such a solution exists if K equivalent to 1 and g equivalent to 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we completely settle the embedding problem for m-cycle systems with m less than or equal to 14. We also solve the more general problem of finding m-cycle systems of K-v - K-u when m is an element of {4,6,7,8,10,12,14}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well-known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order v for all v equivalent to 1 or 3 (mod 6), v greater than or equal to 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order v < 2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denote the set of 21 non-isomorphic cubic graphs of order 10 by L. We first determine precisely which L is an element of L occur as the leave of a partial Steiner triple system, thus settling the existence problem for partial Steiner triple systems of order 10 with cubic leaves. Then we settle the embedding problem for partial Steiner triple systems with leaves L is an element of L. This second result is obtained as a corollary of a more general result which gives, for each integer v greater than or equal to 10 and each L is an element of L, necessary and sufficient conditions for the existence of a partial Steiner triple system of order v with leave consisting of the complement of L and v - 10 isolated vertices. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.