8 resultados para Schongauer, Martin, active 15th century.
em University of Queensland eSpace - Australia
Resumo:
Cytochrome c biogenesis in Escherichia coli is a complex process requiring at least eight genes (ccmABC DEFGH). One of these genes, ccmG, encodes a thioredoxin-like protein with unusually specific redox activity. Here, we investigate the basis for CcmG function and demonstrate the importance of acidic residues surrounding the redox-active center.
Resumo:
Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The crystal structure of human phenylethanolamine N-methyltransferase (hPNMT) reveals a disulfide- linked dimer, despite the presence of reducing agent in the crystallisation conditions. By removing the reducing agent, hPNMT crystals grow more rapidly and at lower protein concentrations. However, it was unclear whether the disulfide bonds are only present in the crystal form or whether these affect enzyme activity. The solution oligomeric state of hPNMT was investigated using biochemical techniques and activity assays. We found that in the absence of reducing agent, hPNMT forms dimers in solution. Furthermore, the solution dimer of hPNMT incorporates disulfide bonds, since this form is sensitive to reducing agent. The C48A and C139A mutants of hPNMT, which are incapable of forming the disulfide bond observed in the crystal structure, have a decreased propensity to form dimer in solution. Those dimers that do form are also sensitive to reducing agent. Further, the C48A/C139A double mutant shows only monomeric behaviour. Both dimeric and monomeric hPNMT, as well as mutants have wildtype enzyme activity. These results show that a variety of disulfides, including those observed in the crystal structure, can form in solution. In addition, disulfide-linked dimers are as active as the monomeric enzyme indicating that the crystal structure of the protein is a valid target for inhibitor design. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.
Resumo:
3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines (14, 16, and 18-22) are highly potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT). Molecular modeling studies with 3-fluoromethyl-7-(N-alkyl aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines, such as 16, suggested that the sulfonamide -NH-could form a hydrogen bond with the side chain of Lys57. However, SAR studies and analysis of the crystal structure of human PNMT (hPNMT) in complex with 7 indicated that the sulfonamide oxygens, and not the sulfonamide -NH-, formed favorable interactions with the enzyme. Thus, we hypothesized that replacement of the sulfonamide -NH-with a methylene group could result in compounds that would retain potency at PNMT and that would have increased lipophilicity, thus increasing the likelihood they will cross the blood brain barrier. A series of 3-fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines (23-30) were synthesized and evaluated for their PNMT inhibitory potency and affinity for the R2-adrenoceptor. A comparison of these compounds with their isosteric sulfonamides (14, 16, and 18-22) showed that the sulfones were more lipophilic but less potent than their corresponding sulfonamides. Sulfone 24 (hPNMT K-i = 1.3 mu M) is the most potent compound in this series and is quite selective for PNMT versus the R2-adrenoceptor, but 24 is less potent than the corresponding sulfonamide, 16 (hPNMT K-i = 0.13 mu M). We also report the crystal structure of hPNMT in complex with sulfonamide 15, from which a potential hydrogen bond acceptor within the hPNMT active site has been identified, the main chain carbonyl oxygen of Asn39. The interaction of this residue with the sulfonamide -NH-is likely responsible for much of the enhanced inhibitory potency of the sulfonamides versus the sulfones.
Resumo:
The APTX gene, mutated in patients with the neurological disorder ataxia with oculomotor apraxia type 1 (AOA1), encodes a novel protein aprataxin. We describe here, the interaction and interdependence between aprataxin and several nucleolar proteins, including nucleolin, nucleophosmin and upstream binding factor-1 (UBF-1), involved in ribosomal RNA (rRNA) synthesis and cellular stress signalling. Interaction between aprataxin and nucleolin occurred through their respective N-terminal regions. In AOA1 cells lacking aprataxin, the stability of nucleolin was significantly reduced. On the other hand, down-regulation of nucleolin by RNA interference did not affect aprataxin protein levels but abolished its nucleolar localization suggesting that the interaction with nucleolin is involved in its nucleolar targeting. GFP-aprataxin fusion protein co-localized with nucleolin, nucleophosmin and UBF-1 in nucleoli and inhibition of ribosomal DNA transcription altered the distribution of aprataxin in the nucleolus, suggesting that the nature of the nucleolar localization of aprataxin is also dependent on ongoing rRNA synthesis. In vivo rRNA synthesis analysis showed only a minor decrease in AOA1 cells when compared with controls cells. These results demonstrate a cross-dependence between aprataxin and nucleolin in the nucleolus and while aprataxin does not appear to be directly involved in rRNA synthesis its nucleolar localization is dependent on this synthesis.
Resumo:
The medical management of those envenomed by snakes, spiders and poisonous fish in Australia featured extensively in the writings 19th century doctors, expeditioners and anthropologists. Against the background of this introduced medical doctrine there already existed an extensive tradition of Aboriginal medical lore; techniques of heat treatment, suction, incision and the application of plant-derived pharmacological substances featured extensively in the management of envenomed victims. The application of a hair-string or grass-string ligature, suctioning of the bite-site and incision were practised in a variety of combinations. Such evolved independently of and pre-dated such practices, which were promoted extensively by immigrant European doctors in the late 19th century. Pacific scientific toxinology began in the 17th century with Don Diego de Prado y Tovar's 1606 account of ciguatera. By the end of the 19th century more than 30 papers and books had defined the natural history of Australian elapid poisoning. The medical management of snakebite in Australia was the focus of great controversy from 1860 to 1900. Dogmatic claims of the supposed antidote efficacy of intravenous ammonia by Professor G.B. Halford, and that of strychnine by Dr. Augustus Mueller, claimed mainstream medical attention. This era of potential iatrogenic disaster and dogma was brought to a conclusion by the objective experiments of Joseph Lauterer and Thomas Lane Bancroft in 1890 in Brisbane; and by those of C.J. Martin (from 1893) and Frank Tidswell (from 1898), both of Sydney. The modern era of Australian toxinology developed as a direct consequence of Calmette's discovery, in Paris in 1894, of immune serum, which was protective against snakebite. We review the key contributors and discoveries of toxinology in colonial Australia.