10 resultados para Sap flow density
em University of Queensland eSpace - Australia
Resumo:
Ecophysiological research in Australia has focussed, at different times, on the fundamental similarities in function between all plant species, and on the peculiarity of Australian species with respect to their survival in stressful environments. Early work on plant water relations emphasised the differences between species, and indicated that diverse structural and functional attributes occurred in species from the same water-limited environment. Most recent research has emphasised processes that optimise rates of carbon dioxide exchange, but the understanding of functioning in plants with different morphological arrangements is incomplete. Variation in functions between individual plants and geographic populations in wild species has been examined to a lesser extent. The great variety within and between populations of wild plant species warrants further study for both understanding and more effective management of this biological resource.
Resumo:
The rms2 and rms4 pea ( Pisum sativum L.) branching mutants have higher and lower xylem-cytokinin concentration, respectively, relative to wild type (WT) plants. These genotypes were grown at two levels of nitrogen (N) supply for 18 - 20 d to determine whether or not xylem-cytokinin concentration (X-CK) or delivery altered the transpiration and leaf growth responses to N deprivation. Xylem sap was collected by pressurising de-topped root systems. As sap-flow rate increased, X-CK declined in WT and rms2, but did not change in rms4. When grown at 5.0 mM N, X-CKs of rms2 and rms4 were 36% higher and 6-fold lower, respectively, than WT at sap-flow rates equivalent to whole-plant transpiration. Photoperiod cytokinin (CK) delivery rates ( the product of transpiration and X-CK) decreased more than 6-fold in rms4. Growth of plants at 0.5 mM N had negligible (< 10%) effects on transpiration rates expressed on a leaf area basis in WT and rms4, but decreased transpiration rates of rms2. The low-N treatment decreased leaf expansion by 20 - 25% and expanding leaflet N concentration by 15%. These changes were similar in all genotypes. At sap-flow rates equivalent to whole-plant transpiration, the low N treatment decreased X-CK in rms2 but had no discernible effect in WT and rms4. Since the low N treatment decreased transpiration of all genotypes, photoperiod CK delivery rates also decreased in all genotypes. The similar leaf growth response of all genotypes to N deprivation despite differences in both absolute and relative X-CKs and deliveries suggests that shoot N status is more important in regulating leaf expansion than xylem-supplied cytokinins. The decreased X-CK and transpiration rate of rms2 following N deprivation suggests that changes in xylem-supplied CKs may modify water use.
Resumo:
Flow cytometry, in combination with advances in bead coding technologies, is maturing as a powerful high-throughput approach for analyzing molecular interactions. Applications of this technology include antibody assays and single nucleotide polymorphism mapping. This review describes the recent development of a microbead flow cytometric approach to analyze RNA-protein interactions and discusses emerging bead coding strategies that together will allow genome-wide identification of RNA-protein complexes. The microbead flow cytometric approach is flexible and provides new opportunities for functional genomic studies and small-molecule screening.
Resumo:
Particle flow patterns were investigated for wet granulation and dry powder mixing in ploughshare mixers using Positron Emission Particle Tracking (PEPT). In a 4-1 mixer, calcium carbonate with mean size 45 mum was granulated using a 50 wt.% solution of glycerol and water as binding fluid, and particle movement was followed using a 600-mum calcium hydroxy-phosphate tracer particle. In a 20-1 mixer, dry powder flow was studied using a 600-mum resin bead tracer particle to simulate the bulk polypropylene powder with mean size 600 mum. Important differences were seen between particle flow patterns for wet and dry systems. Particle speed relative to blade speed was lower in the wet system than in the dry system, with the ratios of average particle speed to blade tip speed for all experiments in the range 0.01-015. In the axial plane, the same particle motion was observed around each blade; this provides a significant advance for modelling flow in ploughshare mixers. For the future, a detailed understanding of the local velocity, acceleration and density variations around a plough blade will reveal the effects of flow patterns in granulating systems on the resultant distribution of granular product attributes such as size, density and strength. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.
Resumo:
Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: Relationships between low-density lipoprotein cholesterol and endothelial function in hemodialysis patients have yet to be investigated. Furthermore, current reporting of endothelial function data using flow-mediated dilatation has recognised limitations. The aims of the study were to determine the relationship between low-density lipoproteins and endothelial function in hemodialysis patients and to investigate the validity of determining the area under the curve for data collected during the flow-mediated dilatation technique. Methods: Brachial artery responses to reactive hyperemia (endothelial-dependent) and glyceryl trinitrate (endothelial-independent) were assessed in 19 hemodialysis patients using high-resolution ultrasound. Lipid profiles and other factors known to effect brachial artery reactivity were also measured prior to the flow-mediated dilatation technique. Results: There were no significant relationships between serum low-density lipoproteins and endothelial-dependent or -independent vasodilation using absolute change (mm), relative change (%), time to peak change (s) or area under the curve (mm(.)s). In hemodialysis patients with atherosclerosis, area under the curve analysis showed a significantly (p < 0.05) decreased endothelial-dependent response (mean +/- S.D.: 19.2 +/- 17.4) compared to non-atherosclerotic patients (42.3 +/- 28.6). However, when analysing these data using absolute change, relative change or time to peak dilatation, there were no significant differences between the two groups. Conclusions: In summary, there was no relationship between low-density lipoproteins and endothelial function in hemodialysis patients. In addition, area under the curve analysis of flow-mediated vasodilatation data may be a useful method of determining the temporal vascular response during the procedure. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N = 11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.
Resumo:
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.